15.如圖2.已知A.D.B.C分別為過拋物線焦點(diǎn)F的直線與該拋物線和圓的交點(diǎn).則 . 查看更多

 

題目列表(包括答案和解析)

如圖2-2-3,已知ABCD為平行四邊形,過點(diǎn)A和B的圓與AD、BC分別交于E、F.求證:C、D、E、F四點(diǎn)共圓.

圖2-2-3

查看答案和解析>>

如圖2-5-11,已知⊙O1和⊙O2相交于點(diǎn)A、B,過點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.

圖2-5-11

(1)求證:AD∥EC;

(2)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長(zhǎng).

查看答案和解析>>

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn).(1,
2
2
)
,離心率為
2
2
,左、右焦點(diǎn)分別為F1、F2.點(diǎn)p為直線l:x+y=2上且不在x軸上的任意一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜線分別為k1、k2.①證明:
1
k1
-
3
k2
=2
;②問直線l上是否存在點(diǎn)P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

精英家教網(wǎng)已知拋物線G的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)P(m,4)到其準(zhǔn)線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點(diǎn)的直線依次與拋物線G及圓x2+(y-1)2=1交于A、C、D、B四點(diǎn),試證明|AC|•|BD|為定值;
(III)過A、B分別作拋物G的切線l1,l2且l1,l2交于點(diǎn)M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

精英家教網(wǎng)已知ABCD,A'B'C'D'都是正方形(如圖),而A'、B'、C'、D'分別把AB、BC、CD、DA分為m:n,設(shè)AB=1.
(1)求A'B'C'D'的面積;
(2)求證A'B'C'D'的面積不小于
12

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12:BC.

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.1或; 14.-4; 15.1; 16.6.

三、解答題:本大題共6個(gè)小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

17.解:(Ⅰ)∵,

,????????????????????????? 3分

.??????????????????????? 6分

(Ⅱ)∵,

,∴,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ??? 8分

,∴,???????????? 10分

,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ

故△ABC面積取最大值為.?????????????????????? 12分

 

18.解:(Ⅰ)設(shè)袋中有黑球n個(gè),則每次取出的一個(gè)球是黑球的概率為,    3分

設(shè)“連續(xù)取兩次,都是黑球”為事件A,∴,???????? 5分

,∴.?????????????????????? 6分

(Ⅱ)由(Ⅰ)知,每次取出一個(gè)球,取到紅球的概率是.???????? 7分

設(shè)“連續(xù)取4次球,取到紅球恰為2次”為事件B,“連續(xù)取4次球,取到紅球恰為3次”為事件C,

;?????????????????????? 8分

.???????????????????????? 10分

∴取到紅球恰為2次或3次的概率為

故連續(xù)取4次球,取到紅球恰為2次或3次的概率等于.?????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點(diǎn),連接BO,則BO⊥AA1???????????????????????????????? 2分

∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.??????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點(diǎn),建立如圖空間直角坐標(biāo)系,則,,.則,,.??????????????????????????? 5分

設(shè)是平面ABC的一個(gè)法向量,

,則.設(shè)A1到平面ABC的距離為d.

.????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個(gè)法向量是,又平面ACC1的一個(gè)法向量.∴.???????????????? 11分

∴二面角B-AC-C1的余弦值是.??????????????????? 12分

 

20.解:(Ⅰ)證明:時(shí),;?????????????? 1分

時(shí),,所以,???????????? 2分

即數(shù)列是以2為首項(xiàng),公差為2 的等差數(shù)列.????????????? 3分

,,???????????????????? 4分

當(dāng)時(shí),,當(dāng)時(shí),.???????? 5分

???????????????????????? 6分

(Ⅱ)當(dāng)時(shí),,結(jié)論成立.????????????? 7分

當(dāng)時(shí),?????? 8分

????????????????????? 10分

.???????????????????????? 11分

綜上所述:.????????????????? 12分

 

21.解:(Ⅰ)∵,∴.比較系數(shù)得,,,.????????????????????????????????? 1分

,,,???????????????????? 2分

(Ⅱ)由(Ⅰ)知,

,令,得

x

1

2

+

0

-

0

+

0

-

∴函數(shù)有極大值,極小值.????? 4分

∵函數(shù)在區(qū)間上存在極值,

???????????? 5分

解得

故實(shí)數(shù).??????????????????? 6分

(Ⅲ)函數(shù)的圖象與坐標(biāo)軸無交點(diǎn),有如下兩種情況:

(?)當(dāng)函數(shù)的圖象與x軸無交點(diǎn)時(shí),必須有:

??????????? 7分

,函數(shù)的值域?yàn)?sub>,

解得.???????????????????? 8分

(?)當(dāng)函數(shù)的圖象與y軸無交點(diǎn)時(shí),必須有:

有意義,    9分

解得.??????????? 10分

由(?)、(?)知,p的范圍是,

故實(shí)數(shù)p的取值范圍是.???????????????????? 12分

22.解:(Ⅰ)設(shè),,,

,,

.?????????????????????? 2分

,∴,∴,∴.???????? 4分

則N(c,0),M(0,c),所以,

,則,. ?????????????????? 5分

∴橢圓的方程為.?????????????????????? 6分

(Ⅱ)∵圓O與直線l相切,則,即,????????? 7分

消去y得

∵直線l與橢圓交于兩個(gè)不同點(diǎn),設(shè),

,

,,?????????????????? 8分

,

,?????????????????? 9分

 

,.??????????????????????? 10分

.??????????? 11分

(或).

設(shè),則,,

∴S關(guān)于u在區(qū)間單調(diào)遞增,又,,???????? 13分

.???????????????????????????? 14

 


同步練習(xí)冊(cè)答案