(C) (D) 查看更多

 

題目列表(包括答案和解析)

3、(北京卷理1)集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},則P∩M=( 。

查看答案和解析>>

(中三角函數(shù)的奇偶性及周期)下列函數(shù)中是奇函數(shù),且最小正周期是π的函數(shù)是( 。
A、y=tan2x
B、y=|sinx|
C、y=sin(
π
2
+2x)
D、y=cos(
2
-2x)

查看答案和解析>>

(易向量的概念)下列命題中,正確的是(  )
A、若a∥b,則a與b的方向相同或相反B、若a∥b,b∥c,則a∥cC、若兩個(gè)單位向量互相平行,則這兩個(gè)單位向量相等D、若a=b,b=c,則a=c

查看答案和解析>>

(文)設(shè)a∈R,則a>1是
1
a
<1 的( 。
A、必要但不充分條件
B、充分但不必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

1、c≠0是方程 ax2+y2=c表示橢圓或雙曲線的( 。

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12:BC.

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.1或; 14.-4; 15.1; 16.6.

三、解答題:本大題共6個(gè)小題,共74分.解答要寫出文字說(shuō)明,證明過(guò)程或演算步驟.

17.解:(Ⅰ)∵

,????????????????????????? 3分

.??????????????????????? 6分

(Ⅱ)∵,

,∴,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ??? 8分

,∴,???????????? 10分

,當(dāng)且僅當(dāng)時(shí)取"=".

故△ABC面積取最大值為.?????????????????????? 12分

 

18.解:(Ⅰ)設(shè)袋中有黑球n個(gè),則每次取出的一個(gè)球是黑球的概率為,    3分

設(shè)“連續(xù)取兩次,都是黑球”為事件A,∴,???????? 5分

,∴.?????????????????????? 6分

(Ⅱ)由(Ⅰ)知,每次取出一個(gè)球,取到紅球的概率是.???????? 7分

設(shè)“連續(xù)取4次球,取到紅球恰為2次”為事件B,“連續(xù)取4次球,取到紅球恰為3次”為事件C,

;?????????????????????? 8分

.???????????????????????? 10分

∴取到紅球恰為2次或3次的概率為

故連續(xù)取4次球,取到紅球恰為2次或3次的概率等于.?????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點(diǎn),連接BO,則BO⊥AA1???????????????????????????????? 2分

∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.??????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點(diǎn),建立如圖空間直角坐標(biāo)系,則,,,.則,,,.??????????????????????????? 5分

設(shè)是平面ABC的一個(gè)法向量,

,則.設(shè)A1到平面ABC的距離為d.

.????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個(gè)法向量是,又平面ACC1的一個(gè)法向量.∴.???????????????? 11分

∴二面角B-AC-C1的余弦值是.??????????????????? 12分

 

20.解:(Ⅰ)證明:時(shí),;?????????????? 1分

時(shí),,所以,???????????? 2分

即數(shù)列是以2為首項(xiàng),公差為2 的等差數(shù)列.????????????? 3分

,???????????????????? 4分

當(dāng)時(shí),,當(dāng)時(shí),.???????? 5分

???????????????????????? 6分

(Ⅱ)當(dāng)時(shí),,結(jié)論成立.????????????? 7分

當(dāng)時(shí),?????? 8分

????????????????????? 10分

.???????????????????????? 11分

綜上所述:.????????????????? 12分

 

21.解:(Ⅰ)∵,∴.比較系數(shù)得,.????????????????????????????????? 1分

,,,???????????????????? 2分

(Ⅱ)由(Ⅰ)知,

,令,得

x

1

2

+

0

-

0

+

0

-

∴函數(shù)有極大值,極小值.????? 4分

∵函數(shù)在區(qū)間上存在極值,

???????????? 5分

解得

故實(shí)數(shù).??????????????????? 6分

(Ⅲ)函數(shù)的圖象與坐標(biāo)軸無(wú)交點(diǎn),有如下兩種情況:

(?)當(dāng)函數(shù)的圖象與x軸無(wú)交點(diǎn)時(shí),必須有:

??????????? 7分

,函數(shù)的值域?yàn)?sub>

解得.???????????????????? 8分

(?)當(dāng)函數(shù)的圖象與y軸無(wú)交點(diǎn)時(shí),必須有:

有意義,    9分

解得.??????????? 10分

由(?)、(?)知,p的范圍是,

故實(shí)數(shù)p的取值范圍是.???????????????????? 12分

22.解:(Ⅰ)設(shè),,,

,,,,

.?????????????????????? 2分

,∴,∴,∴.???????? 4分

則N(c,0),M(0,c),所以

,則,. ?????????????????? 5分

∴橢圓的方程為.?????????????????????? 6分

(Ⅱ)∵圓O與直線l相切,則,即,????????? 7分

消去y得

∵直線l與橢圓交于兩個(gè)不同點(diǎn),設(shè),

,,?????????????????? 8分

,

,?????????????????? 9分

 

,.??????????????????????? 10分

.??????????? 11分

(或).

設(shè),則,,

∴S關(guān)于u在區(qū)間單調(diào)遞增,又,???????? 13分

.???????????????????????????? 14

 


同步練習(xí)冊(cè)答案