(3) 記.求數(shù)列的前項和. 查看更多

 

題目列表(包括答案和解析)

數(shù)列的前項和記作,滿足,

        求出數(shù)列的通項公式.

(2),且對正整數(shù)恒成立,求的范圍;

       (3)(原創(chuàng))若中存在一些項成等差數(shù)列,則稱有等差子數(shù)列,若 證明:中不可能有等差子數(shù)列(已知

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

 

數(shù)列的前項和記為

(1)為何值時,數(shù)列是等比數(shù)列?

(2)在(1)的條件下,若等差數(shù)列的前項貨物有最大值,且,又等比數(shù)列,求。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

數(shù)列的前項和記作,滿足,
求出數(shù)列的通項公式.
(2),且對正整數(shù)恒成立,求的范圍;
(3)(原創(chuàng))若中存在一些項成等差數(shù)列,則稱有等差子數(shù)列,若 證明:中不可能有等差子數(shù)列(已知

查看答案和解析>>

記等差數(shù)列的前項和,利用倒序求和的方法得:;類似的,記等比數(shù)列的前項的積為,且,試類比等差數(shù)列求和的方法,可將表示成首項,末項與項數(shù)的一個關(guān)系式,即公式_______________。

 

查看答案和解析>>

記等差數(shù)列的前項和,利用倒序求和的方法得:;類似的,記等比數(shù)列的前項的積為,且,試類比等差數(shù)列求和的方法,可將表示成首項,末項與項數(shù)的一個關(guān)系式,即公式_______________。

查看答案和解析>>

一、1―5DCDDD       6―10CBADC   11―12DA

    1. 20080428

      三、17、解:

      (1)

            

             ∵相鄰兩對稱軸的距離為

              

         (2)

            

             又

             若對任意,恒有

             解得

      18、(理)解  用A,B,C分別表示事件甲、乙、丙面試合格.由題意知A,B,C相互獨立,且P(A)=P(B)=P(C)=.

      (Ⅰ)至少有1人面試合格的概率是

      (Ⅱ)的可能取值為0,1,2,3.

           

                    =

                    =

           

                    =

                    =

           

           

      所以, 的分布列是

      0

      1

      2

      3

      P

      的期望

      (文)解  基本事件共有6×6=36個.  (Ⅰ) 是5的倍數(shù)包含以下基本事件: (1, 4) (4, 1) (2, 3) (3, 2)  (4, 6) (6, 4) (5, 5)共7個.所以,是5的倍數(shù)的概率是 .

      (Ⅱ)是3的倍數(shù)包含的基本事件(如圖)

      共20個,所以,是3的倍數(shù)的概率是.

      (Ⅲ)此事件的對立事件是都不是5或6,其基本事件有個,所以,中至少有一個5或6的概率是.

      19、證明:(1)∵

                                               

      (2)令中點為,中點為,連結(jié)

           ∵的中位線

                    

      又∵

          

           ∴

           ∵為正

             

           ∴

           又∵,

       ∴四邊形為平行四邊形   

        

      20、解:(1)由,得:

                  

           (2)由             ①

                得         ②

            由②―①,得  

             即:

           

            由于數(shù)列各項均為正數(shù),

               即 

            數(shù)列是首項為,公差為的等差數(shù)列,

            數(shù)列的通項公式是  

          (3)由,得:

            

              

              

      21、解(1)由題意的中垂線方程分別為

      于是圓心坐標為

      =,即   所以 ,

      于是 ,所以  即

      (2)假設(shè)相切, 則

      , 這與矛盾.

      故直線不能與圓相切.

      22、(理)

      (文)(1)f ′(x)=3x2+2a x+b=0.由題設(shè),x=1,x=-為f ′(x)=0的解.-a=1-,=1×(-).∴a=-,b=-2.經(jīng)檢驗得:這時都是極值點.(2)f (x)=x3-x2-2 x+c,由f (-1)=-1-+2+c=,c=1.∴f (x)=x3-x2-2 x+1.

      x

      (-∞,-)

      (-,1)

      (1,+∞)

      f ′(x)

      ∴  f (x)的遞增區(qū)間為(-∞,-),及(1,+∞),遞減區(qū)間為(-,1).當(dāng)x=-時,f (x)有極大值,f (-)=;當(dāng)x=1時,f (x)有極小值,f (1)=-.(3)由(1)得,f ′(x)=(x-1)(3x+2),f (x)=x3-x2-2 x+c, f (x)在[-1,-及(1,2]上遞增,在(-,1)遞減.而f (-)=--++c=c+.f (2)=8-2-4+c=c+2.∴  f (x)在[-1,2]上的最大值為c+2.

      ∴  ∴  ∴   或∴ 

       

       

       


      同步練習(xí)冊答案
    2. <rt id="n2fcy"><kbd id="n2fcy"></kbd></rt>
      闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹