(Ⅰ)證明平面, 查看更多

 

題目列表(包括答案和解析)


(1)證明://平面;
(2)在棱上是否存在點,使三棱錐
體積為?并說明理由.

查看答案和解析>>

平面內(nèi)n條直線,其中任何兩條不平行,任何三條不共點.
(1)設(shè)這n條直線互相分割成f(n)條線段或射線,猜想f(n)的表達式并給出證明;
(2)求證:這n條直線把平面分成
n(n+1)2
+1
個區(qū)域.

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知兩點M(1,-3)、N(5,1),若點C滿足
OC
=t
OM
+(1-t)
ON
(t∈R),點C的軌跡與拋物線:y2=4x交于A、B兩點.
(Ⅰ)求證:
OA
OB
;
(Ⅱ)在x軸上是否存在一點P(m,0)(m∈R),使得過P點的直線交拋物線于D、E兩點,并以該弦DE為直徑的圓都過原點.若存在,請求出m的值及圓心的軌跡方程;若不存在,請說明理由.

查看答案和解析>>

(Ⅰ)如圖1,A,B,C是平面內(nèi)的三個點,且A與B不重合,P是平面內(nèi)任意一點,若點C在直線AB上,試證明:存在實數(shù)λ,使得:
PC
PA
+(1-λ)
PB

(Ⅱ)如圖2,設(shè)G為△ABC的重心,PQ過G點且與AB、AC(或其延長線)分別交于P,Q點,若
AP
=m
AB
,
AQ
=n
AC
,試探究:
1
m
+
1
n
的值是否為定值,若為定值,求出這個定值;若不是定值,請說明理由.

查看答案和解析>>

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點.
(I)求證:OD∥平面ABC;
(II)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案