③若, ④若. 查看更多

 

題目列表(包括答案和解析)

若二次函數(shù)滿足,w.w.w.k.s.5.u.c.o.m       

(1)求的解析式; (2) 若在區(qū)間[-1,1]上,不等式>2x+m恒成立,求實數(shù)m的取值范圍。

查看答案和解析>>

若實數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m。
 (I)若x2-1比3接近0,求x的取值范圍;
 (Ⅱ)對任意兩個不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
 (Ⅲ)已知函數(shù)f(x)的定義域D={x|x≠kπ,k∈Z,x∈R}。任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個值。寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明)。

查看答案和解析>>

若等差數(shù)列的前項和公式為,

=_______,首項=_______;公差=_______。

查看答案和解析>>

若方程有實根,則實數(shù)_______;且實數(shù)_______。

查看答案和解析>>

f ( x ) = a x 2 + b x + c,( abc∈R )在區(qū)間[ 0,1 ]上恒有| f ( x ) | ≤ 1。

(1)對所有這樣的f ( x ),求 | a | + | b | + | c | 的最大值;

(2)試給出一個這樣的f ( x ),使 | a | + | b | + | c | 確實取到上述最大值。

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 DABBA    6―10 DDCCB    11―12 AC

二、填空題:本大題共4小題,每小題5分,共20分。

13.    14.    15.    16.②④

三、解答題:本大題共6小題,滿分70分。

17.(本小題滿分10分)

   (I)解:

時,

   ………………2分

   ………………4分

, 

  ………………5分

   (II)解:

18.(本小題滿分12分)

   (I)解:

   (II)解:

由(I)知:

   (III)解:

    <td id="vjznk"><legend id="vjznk"></legend></td>

    19.(本小題滿分12分)

    解法一:

       (I)證明

    如圖,連結(jié)AC,AC交BD于點G,連結(jié)EG。

    ∵ 底面ABCD是正方形,

    ∴ G為AC的中點.

    又E為PC的中點,

    ∴EG//PA。

    ∵EG平面EDB,PA平面EDB,

    ∴PA//平面EDB   ………………4分

       (II)證明:

    ∵ PD⊥底面ABCD,∴PD⊥BC,PD⊥DC,PD⊥DB

    又∵BC⊥DC,PD∩DC=D,

    ∴BC⊥平面PDC。

    ∴PC是PB在平面PDC內(nèi)的射影。

    ∵PD⊥DC,PD=DC,點E是PC的中點,

    ∴DE⊥PC。

    由三垂線定理知,DE⊥PB。

    ∵DE⊥PB,EF⊥PB,DE∩EF=E,

    ∴PB⊥平面EFD。   …………………………8分

       (III)解:

    ∵PB⊥平面EFD,

    ∴PB⊥FD。

    又∵EF⊥PB,F(xiàn)D∩EF=F,

    ∴∠EFD就是二面角C―PB―D的平面角!10分

    ∵PD=DC=BC=2,

    ∴PC=DB=

    ∵PD⊥DB,

    由(II)知:DE⊥PC,DE⊥PB,PC∩PB=P,

    ∴DE⊥平面PBC。

    ∵EF平面PBC,

    ∴DE⊥EF。

    ∴∠EFD=60°。

    故所求二面角C―PB―D的大小為60°。  ………………12分

    解法二:

    如圖,以點D為坐標(biāo)原點,DA、DC、DP所在直線分別為x軸、y軸、z軸,

    建立空間直角坐標(biāo)系,得以下各點坐標(biāo):D(0,0,0),A(2,0,0),B(2,2,0),

    C(0,2,0),P(0,0,2)   ………………1分

       (I)證明:

    連結(jié)AC,AC交BD于點G,連結(jié)EG。

    ∵ 底面ABCD是正方形,

    ∴ G為AC的中點.G點坐標(biāo)為(1,1,0)。

  • <center id="vjznk"><em id="vjznk"></em></center>

    高考資源網(wǎng)www.ks5u.com

    ∴PA//平面EDB   ………………4分

       (II)證明:

       (III)解:

    ∵PB⊥平面EFD,

    ∴PB⊥FD。

    又∵EF⊥PB,F(xiàn)D∩EF=F,

    ∴∠EFD就是二面角C―PB―D的平面角!10分

    ∴∠EFD=60°。

    故所求二面角C―PB―D的大小為60°。  ………………12分

    20.(本小題滿分12分)

       (I)解:

    設(shè) “從甲盒內(nèi)取出的2個球均為黑球”為事件,“從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件相互獨立,所以取出的4個球均為黑球的概率為

       ………………2分

    依題設(shè)

    故乙盒內(nèi)紅球的個數(shù)為2。  ……………………5分

    (II)解: 由(I)知

    ξ的分布列為

    ξ

    0

    1

    2

    3

    P

                                                         ………………10分

     ………………12分

    21.(本小題滿分12分)

       (I)解:由題意設(shè)雙曲線S的方程為   ………………2分

    c為它的半焦距,

       (II)解:

    22.(本小題滿分12分)

       (I)解:

      

       (III)解:

       (III)解:

     

     

    w.w.w.k.s.5.u.c.o.m

    www.ks5u.com


    同步練習(xí)冊答案
    <menuitem id="vjznk"></menuitem>