題目列表(包括答案和解析)
設(shè)事件A發(fā)生的概率為p(0<p<1),
(1)證明事件A在一次試驗(yàn)中發(fā)生次數(shù)ε的方差不超過.
(2) 求的最大值
(3)在n次獨(dú)立重復(fù)實(shí)驗(yàn)中,事件A發(fā)生次數(shù)ξ的方差最大值是多少?
設(shè)一次試驗(yàn)成功的概率是p,進(jìn)行625次獨(dú)立重復(fù)試驗(yàn),問p為何值時成功次數(shù)的標(biāo)準(zhǔn)差的值最大,最大值是多少?
(1)如圖,某人投標(biāo)投中圓的概率是多少(投在正方形外面或邊緣不算)?
(2)同(1)中圖形,利用隨機(jī)模擬的方法近似計(jì)算正方形內(nèi)切圓的面積,并估計(jì)π的近似值.
一、選擇題(每小題5分,共50分)
1.B 2.C 3.A 4.D 5.C 6.D 7.B 8.C 9.A 10.D
二、填空題(每小題4分,共24分)
11.180 12.60 13. 14.2 15.5 16.
三、解答題(本大題共6小題,共76分)
17.(本題12分)
解:(Ⅰ)
………………………………(2分)
…………(4分)
…………………………………(6分)
(Ⅱ)
. ……………(8分)
由已知條件
根據(jù)正弦定理,得 …………………(10分)
……………………(12分)
18.(本題12分)
解:(Ⅰ) ……………………(2分)
……………………(4分)
……………………(6分)
當(dāng)時,有(人).
在的基礎(chǔ)上,有(人),
……………………(8分)
(Ⅱ) …………(10分)
…………………………………(12分)
19.(本題12分)
證明:(Ⅰ)在△中,
…………………………(2分)
平面. …………………………(4分)
平面
…………………………(6分)
(Ⅱ)連接交于M,則M為的中點(diǎn) …………………………(8分)
連接DM,則∥, …………………………(10分)
平面,平面,
∥平面 …………………………(12分)
20.(本題12分)
解:(Ⅰ)由已知得,又,
即. …………………………(2分)
,公差.
由,得 …………………………(4分)
即.解得或(舍去).
. …………………………(6分)
(Ⅱ)由得
…………………………(8分)
…………………………(9分)
是等差數(shù)列.
則
………………………(11分)
……………………(12分)
21.(本題14分)
解:(Ⅰ)依題意得
. ………………………(2分)
把(1,3)代入.
解得.
橢圓的方程為. ………………………(4分)
(Ⅱ)由(Ⅰ)得,設(shè),如圖所示
點(diǎn)在橢圓上,
. ①
點(diǎn)異于頂點(diǎn)、,
.
由、、三點(diǎn)共線,可得
從而 …………………………(7分)
② …………(8分)
將①式代入②式化簡得 …………(10分)
…………(12分)
于是為銳角,為鈍角. ……………(14分)
22.(本題14分)
解:(Ⅰ),
令,得或. ………………(2分)
當(dāng)時,在上單調(diào)遞增;
當(dāng)時,在上單調(diào)遞減,
而,
當(dāng)時,的值域是. ……………(4分)(Ⅱ)設(shè)函數(shù)在上的值域是A,
若對任意.總存在1,使,
. ……………(6分)
.
①當(dāng)時,,
函數(shù)在上單調(diào)遞減.
,
當(dāng)時,不滿足; ……………………(8分)
②當(dāng)時,,
令,得或(舍去 ………………(9分)
(i)時,的變化如下表:
0
2
-
0
+
0
.
,解得. …………………(11分)
(ii)當(dāng)時,
函數(shù)在上單調(diào)遞減.
,當(dāng)時,不滿足. …………………(13分)
綜上可知,實(shí)數(shù)的取值范圍是. ……………………(14分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com