3.本卷共12小題.共100分.題號二三總分(17)(18)(19)(20)(21)(22)得分 得分評卷人 查看更多

 

題目列表(包括答案和解析)

請按照題號在各題的答題區(qū)域(黑色線框)內(nèi)作答,超出答題區(qū)域書寫的答案無效。

參考公式:

樣本數(shù)據(jù),,的標(biāo)準(zhǔn)差

         其中為樣本平均數(shù)

柱體體積公式

   

其中為底面面積,為高

 

錐體體積公式

   

其中為底面面積,為高

球的表面積和體積公式

其中為球的半徑

 
 


第Ⅰ卷

一、選擇題:本大題共12小題,每小題5分,滿分60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

1.已知函數(shù)的定義域為,的定義域為,則

                空集

2.已知復(fù)數(shù),則它的共軛復(fù)數(shù)等于

                                  

3.設(shè)變量滿足線性約束條件,則目標(biāo)函數(shù)的最小值為

6               7              8                  23

查看答案和解析>>

(本小題共10分)

已知的三個角的對邊分別為,且成等差數(shù)列,且。數(shù)列是等比數(shù)列,且首項,公比為。

(1)求數(shù)列的通項公式;

(2)若,求數(shù)列的前項和。

 

查看答案和解析>>

 [番茄花園1] 設(shè)O為坐標(biāo)原點,,是雙曲線(a>0,b>0)的焦點,若在雙曲線上存在點P,滿足∠P=60°,∣OP∣=,則該雙曲線的漸近線方程為

(A)x±y=0          (B)x±y=0

(C)x±=0         (D)±y=0

 

非選擇題部分(共100分)

二,填空題:本大題共7小題,每小題4分,共28分。

 


 [番茄花園1]1.

查看答案和解析>>

(本小題共14分)

已知二次函數(shù),f(x+1)為偶函數(shù),函數(shù)f(x)的圖象與直線y=x相切.

(1)求f(x)的解析式;

(2)若函數(shù)上是單調(diào)減函數(shù),那么:求k的取值范圍;

 

查看答案和解析>>

(本小題共14分)

 已知直三棱柱的所有棱長都相等,且

分別為的中點.

 (Ⅰ) 求證:平面平面;

(Ⅱ)求證:平面.

 

查看答案和解析>>

一、選擇題(每小題5分,共50分)

1.B   2.C   3.A   4.D   5.C   6.D  7.B  8.C  9.A  10.D

二、填空題(每小題4分,共24分)

    l 1.192   12.286     13.   14.   15.840     l6.4;

三、解答題(本大題共6小題,共76分)

17.(本題12分)

解:(Ⅰ)

                         ………………………………(2分)

                 

   …………(4分)

                    

                                             …………………………………(6分)

       (Ⅱ)

               .                     ……………(8分)

              由已知條件

              根據(jù)正弦定理,得               …………………(10分)

                   ……………………(12分)

18.(本題12分)

解:(Ⅰ)在7人中選出3人,總的結(jié)果數(shù)是種           ………………(2分)

記“被選中的3人中至多有1名女生”為事件A,則A包含兩種情形:

              ①被選中的是1名女生,2名男生的結(jié)果數(shù)是種,

               ②被選中的是3名男生的結(jié)果數(shù)是種,           ………………(4分)

至多選中1名女生的概率為.  ……………(6分)

(Ⅱ)由題意知隨機變量可能的取值為:0,1,2,3,則有

      ……………………(8分)

的分布列

 

0

1

2

3

P

 

 

 

……………(10分)

 

的數(shù)學(xué)期望        … ……(12分)

19.(本題12分)

解:(Ⅰ)連接,以所在的直線為軸,軸,

建立如圖所示的空間直角坐標(biāo)系.       …………………………………(2分)

    正四棱錐的底面邊長和側(cè)棱長都是2,

   

   的中點.

                                     …………(4分)

 

即異面直線所成的角為      ………(6分)

(Ⅱ)

是平面的一個法向量.        ……………………………(8分)

由(Ⅰ)得

設(shè)平面的一個法向量為,

則由,得

,不妨設(shè)

  得平面的一個法向量為.            ………………(10分)

二面角小于,

二面角的余弦值為.             ………………(12分)

20.(本題12分)

    解:(Ⅰ)由已知得,又,

                  .   …………………………(2分)

                  ,公差

                  由,得   …………………………(4分)

                    

.解得(舍去).

       .           …………………………(6分)

(Ⅱ)由

          …………………………(8分)

                      …………………………(9分)

   是等差數(shù)列.

    ………………………(11分)

            ……………………(12分)

21.(本題14分)

  解:(Ⅰ)依題意得

 

        .                  ………………………(2分)

            把(1,3)代入

            解得

橢圓的方程為.                 ………………………(4分)

(Ⅱ)由(Ⅰ)得,設(shè),如圖所示

   點在橢圓上,

.       ①

點異于頂點、

、三點共線,可得

從而     …………………………(7分)

 ②  …………(8分)

將①式代入②式化簡得            …………(10分)

                                     …………(12分)

于是為銳角,為鈍角.

點B在以MN為直徑的圓內(nèi).                     ……………(14分)

 

22.(本題14分)

解:(Ⅰ),

                  令,得.          ………………(2分)

                  當(dāng)時,上單調(diào)遞

當(dāng)時,上單調(diào)遞減,

                  而,

                  當(dāng)時,的值域是.    ……………(4分)

(Ⅱ)設(shè)函數(shù)上的值域是A,

若對任意.總存在1,使,

.                               ……………(6分)

①當(dāng)時,,

               函數(shù)上單調(diào)遞減.

              

當(dāng)時,不滿足;    ……………………(8分)

②當(dāng)時,,

,得(舍去        ………………(9分)

(i)時,的變化如下表:

0

2

 

-

0

+

 

0

,解得.      …………………(11分)

(ii)當(dāng)時,

       函數(shù)上單調(diào)遞減.

       ,

        當(dāng)時,不滿足.         …………………(13分)

        綜上可知,實數(shù)的取值范圍是.     ……………………(14分)

 


同步練習(xí)冊答案