(2013•南昌)某數(shù)學活動小組在作三角形的拓展圖形,研究其性質(zhì)時,經(jīng)歷了如下過程:
(1)操作發(fā)現(xiàn):在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖1所示,其中DF⊥AB于點F,EG⊥AC于點G,M是BC的中點,連接MD和ME,則下列結論正確的是
①②③④
①②③④
(填序號即可)
①AF=AG=
AB;②MD=ME;③整個圖形是軸對稱圖形;④MD⊥ME.
(2)數(shù)學思考:在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖2所示,M是BC的中點,連接MD和ME,則MD和ME具有怎樣的數(shù)量關系?請給出證明過程;
(3)類比探究:
(i)在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內(nèi)側作等腰直角三角形,如圖3所示,M是BC的中點,連接MD和ME,試判斷△MED的形狀.答:
等腰直角三角形
等腰直角三角形
.
(ii)在三邊互不相等的△ABC中(見備用圖),仍分別以AB和AC為斜邊,向△ABC的內(nèi)側作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中點,連接MD和ME,要使(2)中的結論此時仍然成立,你認為需增加一個什么樣的條件?(限用題中字母表示)并說明理由.