經(jīng)檢驗(yàn)是原分式方程的解答:該廠原來(lái)每天生產(chǎn)100頂帳篷. 查看更多

 

題目列表(包括答案和解析)

觀察可得最簡(jiǎn)公分母是(x+1)(x-1),方程兩邊乘最簡(jiǎn)公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.

【解答】

(2)方程的兩邊同乘(x+1)(x-1),得

2(x-1)+4=x2-1,

x2-2x-3=0,

(x-3)(x+1)=0,

解得x1=3,x2=-1,

檢驗(yàn):把x=3代入(x+1)(x-1)=8≠0,即x=3是原分式方程的解,

x=-1代入(x+1)(x-1)=0,即x=-1不是原分式方程的解,

則原方程的解為:x=3.

【點(diǎn)評(píng)】此題考查了實(shí)數(shù)的混合運(yùn)算與分式方程的解法.此題難度不大,但注意掌握絕對(duì)值的性質(zhì)、負(fù)指數(shù)冪的性質(zhì)、零指數(shù)冪的性質(zhì)以及特殊角的三角函數(shù)值,注意解分式方程一定要驗(yàn)根.

20.(本題滿分5分)如圖,已知△ABC,且∠ACB=90°。

(1)請(qǐng)用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫(xiě)作法和證明);

①以點(diǎn)A為圓心,BC邊的長(zhǎng)為半徑作⊙A;

②以點(diǎn)B為頂點(diǎn),在AB邊的下方作∠ABD=∠BAC.

(2)請(qǐng)判斷直線BD與⊙A的位置關(guān)系(不必證明).

 


查看答案和解析>>

6、下列說(shuō)法中,錯(cuò)誤的是(  )

查看答案和解析>>

某花圃用花盆培育某種花苗,經(jīng)過(guò)試驗(yàn)發(fā)現(xiàn)每盆的盈利與每盆的株數(shù)構(gòu)成一定的關(guān)系.每盆植入3株時(shí),平均單株盈利6元,以同樣的栽培條件,若每盆增加1株,平均單株盈利就減少1元,要使每盆的盈利達(dá)到20元,每盆應(yīng)該植多少株?
小強(qiáng)的解法如下:
解:設(shè)每盆花苗增加x株時(shí),每盆盈利20元,根據(jù)題意,得:
20x+3
=6-x

解這個(gè)方程得:x1=1,x2=2
經(jīng)檢驗(yàn),x1=1,x2=2都是所列方程的解
答:要使每盆的盈利達(dá)到20元,每盆應(yīng)該植入4或5株.
閱讀后完成以下問(wèn)題:
(1)本題涉及的主要數(shù)量有每盆花苗株數(shù),平均單株盈利,每盆花苗的盈利等,請(qǐng)寫(xiě)出兩個(gè)不同的等量關(guān)系
平均單株盈利×株數(shù)=每盆盈利,每盆的株數(shù)=3+每盆增加的株數(shù).
平均單株盈利×株數(shù)=每盆盈利,每盆的株數(shù)=3+每盆增加的株數(shù).

(2)請(qǐng)用一種與小強(qiáng)不相同的方法求解上述問(wèn)題.

查看答案和解析>>

(2013•濟(jì)寧)人教版教科書(shū)對(duì)分式方程驗(yàn)根的歸納如下:
“解分式方程時(shí),去分母后所得整式方程的解有可能使原分式方程中的分母為0,因此應(yīng)如下檢驗(yàn):將整式方程的解代入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解.”
請(qǐng)你根據(jù)對(duì)這段話的理解,解決下面問(wèn)題:
已知關(guān)于x的方程
m-1
x-1
-
x
x-1
=0無(wú)解,方程x2+kx+6=0的一個(gè)根是m.
(1)求m和k的值;
(2)求方程x2+kx+6=0的另一個(gè)根.

查看答案和解析>>

請(qǐng)閱讀并回答問(wèn)題:
在解分式方程
2
x+1
-
3
x-1
=
1
x2-1
時(shí),小躍的解法如下:
解:方程兩邊同乘以(x+1)(x-1),得2(x-1)-3=1.①2x-1-3=1.②
解得            x=
5
2

檢驗(yàn):x=
5
2
時(shí),(x+1)(x-1)≠0,③
所以x=
5
2
是原分式方程的解.④
(1)你認(rèn)為小躍在哪里出現(xiàn)了錯(cuò)誤
①②
①②
(只填序號(hào));
(2)針對(duì)小躍解分式方程時(shí)出現(xiàn)的錯(cuò)誤和解分式方程中的其它重要步驟,請(qǐng)你提出至少三個(gè)改進(jìn)的建議.

查看答案和解析>>


同步練習(xí)冊(cè)答案