題目列表(包括答案和解析)
13 |
12 |
13 |
12 |
2k-3 |
k-1 |
3 |
2 |
3 |
2 |
2k-3 |
k-1 |
3 |
2 |
1 |
4 |
1 |
4 |
2a-1 |
a |
1 |
2 |
1 |
2 |
1 |
2 |
已知關(guān)于x的方程a2x2+(2a-1)x+1=0有兩個實數(shù)根x1,x2.(1)當a為何值時,x1≠x2;(2)是否存在實數(shù)a,使方程的兩個實數(shù)根互為相反數(shù)?如果存在,求出a的值;如果不存在,說明理由.
解:(1)根據(jù)題意,得△=(2a-1)2-4a2>0,解得a<.
∴當a<時,方程有兩個不相等的實數(shù)根.
(2)存在,如果方程的兩個實數(shù)根x1,x2互為相反數(shù),則x1+x2=-=0①,
解得a=,經(jīng)檢驗,a=是方程①的根.
∴當a=時,方程的兩個實數(shù)根x1與x2互為相反數(shù).
上述解答過程是否有錯誤?如果有,請指出錯誤之處,并解答.
已知關(guān)于x的方程a2x2+(2a-1)x+1=0有兩個實數(shù)根x1,x2.(1)當a為何值時,x1≠x2;(2)是否存在實數(shù)a,使方程的兩個實數(shù)根互為相反數(shù)?如果存在,求出a的值;如果不存在,說明理由.
解:(1)根據(jù)題意,得△=(2a-1)2-4a2>0,解得a<.
∴當a<時,方程有兩個不相等的實數(shù)根.
(2)存在,如果方程的兩個實數(shù)根x1,x2互為相反數(shù),則x1+x2=-=0①,
解得a=,經(jīng)檢驗,a=是方程①的根.
∴當a=時,方程的兩個實數(shù)根x1與x2互為相反數(shù).
上述解答過程是否有錯誤?如果有,請指出錯誤之處,并解答.
x-1 |
x-2 |
|
|
x-8 |
x-6 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com