(II)由的面積.得. 查看更多

 

題目列表(包括答案和解析)

(1)選修4-4:矩陣與變換
已知曲線C1:y=繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°后可得到曲線C2:y2-x2=2,
(I)求由曲線C1變換到曲線C2對(duì)應(yīng)的矩陣M1;    
(II)若矩陣,求曲線C1依次經(jīng)過矩陣M1,M2對(duì)應(yīng)的變換T1,T2變換后得到的曲線方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線l的極坐標(biāo)方程是ρcosθ+ρsinθ-1=0.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,在曲線C:(θ為參數(shù))上求一點(diǎn),使它到直線l的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.
(3)(選修4-5:不等式選講)
將12cm長(zhǎng)的細(xì)鐵線截成三條長(zhǎng)度分別為a、b、c的線段,
(I)求以a、b、c為長(zhǎng)、寬、高的長(zhǎng)方體的體積的最大值;
(II)若這三條線段分別圍成三個(gè)正三角形,求這三個(gè)正三角形面積和的最小值.

查看答案和解析>>

在一定面積的水域中養(yǎng)殖某種魚類,每個(gè)網(wǎng)箱的產(chǎn)量P是網(wǎng)箱個(gè)數(shù)x的一次函數(shù),如果放置4個(gè)網(wǎng)箱,則每個(gè)網(wǎng)箱的產(chǎn)量為16噸;如果放置7個(gè)網(wǎng)箱,則每個(gè)網(wǎng)箱的產(chǎn)量為10噸,由于該水域面積限制,最多只能放置10個(gè)網(wǎng)箱.
(1)試問放置多少個(gè)網(wǎng)箱時(shí),總產(chǎn)量Q最高?
(2)若魚的市場(chǎng)價(jià)為m萬元/噸,養(yǎng)殖的總成本為5lnx+1萬元.
(i)當(dāng)m=0.25時(shí),應(yīng)放置多少個(gè)網(wǎng)箱才能使總收益y最大?
(ii)當(dāng)m≥0.25時(shí),求使得收益y最高的所有可能的x值組成的集合.

查看答案和解析>>

在一定面積的水域中養(yǎng)殖某種魚類,每個(gè)網(wǎng)箱的產(chǎn)量P是網(wǎng)箱個(gè)數(shù)x的一次函數(shù),如果放置4個(gè)網(wǎng)箱,則每個(gè)網(wǎng)箱的產(chǎn)量為16噸;如果放置7個(gè)網(wǎng)箱,則每個(gè)網(wǎng)箱的產(chǎn)量為10噸,由于該水域面積限制,最多只能放置10個(gè)網(wǎng)箱.
(1)試問放置多少個(gè)網(wǎng)箱時(shí),總產(chǎn)量Q最高?
(2)若魚的市場(chǎng)價(jià)為m萬元/噸,養(yǎng)殖的總成本為5lnx+1萬元.
(i)當(dāng)m=0.25時(shí),應(yīng)放置多少個(gè)網(wǎng)箱才能使總收益y最大?
(ii)當(dāng)m≥0.25時(shí),求使得收益y最高的所有可能的x值組成的集合.

查看答案和解析>>

(14分)已知函數(shù)f(x)=的圖像在點(diǎn)P(0,f(0))處的切線方程為y=3x-2

(Ⅰ)求實(shí)數(shù)a,b的值;

(Ⅱ)設(shè)g(x)=f(x)+是[)上的增函數(shù)。

  (i)求實(shí)數(shù)m的最大值;

   (ii)當(dāng)m取最大值時(shí),是否存在點(diǎn)Q,使得過點(diǎn)Q的直線若能與曲線y=g(x)圍成兩個(gè)封閉圖形,則這兩個(gè)封閉圖形的面積總相等?若存在,寫出點(diǎn)Q的坐標(biāo)(可以不必說明理由);若不存在,說明理由。

查看答案和解析>>

如圖所示的多面體V-ABCD,它的正視圖為直角三角形,側(cè)視圖為等腰三角形,俯視圖的邊界為正方形(尺寸如圖所示,單位:cm).
(I)求多面體V-ABCD的表面積;
(II)設(shè)
VE
VB
,是否存在實(shí)數(shù)λ使得平面VCD與平面EAC所成的銳角為30°?若存在,求出實(shí)數(shù)λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案