由正弦定理得 . . 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,PB⊥BC,PD⊥CD,且PA=2,E點(diǎn)滿足
PE
=
1
3
PD

(1)證明:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.
(3)在線段BC上是否存在點(diǎn)F,使得PF∥平面EAC?若存在,確定點(diǎn)F的位置,若不存在請說明理由.

查看答案和解析>>

如圖,已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a為正常數(shù)).過弦AB的中點(diǎn)M作平行于x軸的直線交拋物線C于點(diǎn)D,連接AD、BD得到△ABD.
(i)求實(shí)數(shù)a,b,k滿足的等量關(guān)系;
(ii)△ABD的面積是否為定值?若為定值,求出此定值;若不是定值,請說明理由.

查看答案和解析>>

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,PB⊥BC,PD⊥CD,且PA=2,E點(diǎn)滿足數(shù)學(xué)公式
(1)證明:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.
(3)在線段BC上是否存在點(diǎn)F,使得PF∥平面EAC?若存在,確定點(diǎn)F的位置,若不存在請說明理由.

查看答案和解析>>

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,PB⊥BC,PD⊥CD,且PA=2,E點(diǎn)滿足
PE
=
1
3
PD

(1)證明:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.
(3)在線段BC上是否存在點(diǎn)F,使得PF平面EAC?若存在,確定點(diǎn)F的位置,若不存在請說明理由.
精英家教網(wǎng)

查看答案和解析>>

如圖,已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a為正常數(shù)).過弦AB的中點(diǎn)M作平行于x軸的直線交拋物線C于點(diǎn)D,連接AD、BD得到△ABD.
(i)求實(shí)數(shù)a,b,k滿足的等量關(guān)系;
(ii)△ABD的面積是否為定值?若為定值,求出此定值;若不是定值,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案