(1)由曲線C上任一點(diǎn)E向軸作垂線.垂足為F.動點(diǎn)P滿足.求P的軌跡方程.點(diǎn)P的軌跡可能是圓嗎?請說明理由, 查看更多

 

題目列表(包括答案和解析)

已知曲線C:
y2
m
+x2=1;
(1)由曲線C上任一點(diǎn)E向x軸作垂線,垂足為F,點(diǎn)P在
EF
上,且 
EP
=-
1
3
PF
.問:點(diǎn)P的軌跡可能是圓嗎?請說明理由;
(2)如果直線l的斜率為
2
,且過點(diǎn)M(0,-2),直線l交曲線C于A,B兩點(diǎn),又
MA
MB
=-
9
2
,求曲線C的方程.

查看答案和解析>>

已知曲線C

(1)由曲線C上任一點(diǎn)E向軸作垂線,垂足為F,動點(diǎn)P滿足,所成的比為,求點(diǎn)P的軌跡. P的軌跡可能是圓嗎?請說明理由;

(2)如果直線l的斜率為,且過點(diǎn)M(0,),直線l交曲線C于A、B兩點(diǎn),又,求曲線C的方程.

查看答案和解析>>

已知曲線C:+x2=1,由曲線C上任一點(diǎn)E向x軸作垂線,垂足為F,點(diǎn)P分所成的比為,問:點(diǎn)P的軌跡可能是圓嗎?請說明理由.

查看答案和解析>>

已知曲線C:+x2=1;
(1)由曲線C上任一點(diǎn)E向x軸作垂線,垂足為F,點(diǎn)P在上,且 .問:點(diǎn)P的軌跡可能是圓嗎?請說明理由;
(2)如果直線l的斜率為,且過點(diǎn)M(0,-2),直線l交曲線C于A,B兩點(diǎn),又,求曲線C的方程.

查看答案和解析>>

(08年南昌市一模文)(12分)已知曲線C

(1)由曲線C上任一點(diǎn)E向軸作垂線,垂足為F,點(diǎn)P分所成的比為,求點(diǎn)P的軌跡. P的軌跡可能是圓嗎?請說明理由;

(2)如果直線l的斜率為,且過點(diǎn)M(0,),直線l交曲線C于A、B兩點(diǎn),又,求曲線C的方程.

查看答案和解析>>

 

一、

ABCBA  CDB

二、

9.―2       10.4      11.16      12.36       13.   

14.    15.64

三、

16.解:(1)

…………………………2分

………………4分

取得最大值為,

…………………………6分

(2)設(shè)內(nèi)角A、B、C的對邊分別為a、b、c

由(1)知:

由余弦定理得:

……………………8分

,

      

       當(dāng)且僅當(dāng)    12分

17.解:記事件A、B、C分別表示小明在甲、乙、丙三家公司面試合格,則

      

   (I)三家公司至少有一家面試合格的概率為:

      

       在三家公司至少有一家面試合格的概率為0.96.       6分

   (II)任兩家公司至少有一家面試合格的概率等價(jià)于在三家公司至少有兩家面試合格的概率,

      

             8分

      

       在任意兩家公司至少有一家面試合格的概率為0.7        12分

18.解 :(I)D1在平面ABCD上的射影為O,

<ul id="a7pxy"><b id="a7pxy"></b></ul>

<th id="a7pxy"><strong id="a7pxy"></strong></th>

                 2分

           點(diǎn)O為DC的中點(diǎn),DC=2,

           OC=1.

           又

           同理

          

           平面D1AO.      4分

       (II)平面ABCD,

               

           又平面D1DO.

           ,

           ,

           在平面D1DO內(nèi),作

           垂足為H,則平面ADD1A1

           線段OH的長為點(diǎn)O到平面ADD1A1的距離.       6分

           平面ABCD,

           在平面ABCD上的射影為DO.

           為側(cè)棱DD1與底面ABCD所成的角,

          

           在

           即點(diǎn)O到平面ADD1A1的距離為    8分

  •        平面ABCD,

          

           又平面AOD1

           又,

           為二面角C―AD1―O的平面角      10分

           在

          

           在

          

           取D1C的中點(diǎn)E,連結(jié)AE,

           則

          

          

           在

           二面角C―AD1―O的大小為      12分

    19.解:(I)

               3分

       (II)因?yàn)?sub>

          

           歸納得

           則     5分

          

          

                 7分

       (III)當(dāng)

                 9分

           則

          

                  13分

    20.解:(I)設(shè)

          

          

                  3分

           代入為P點(diǎn)的軌 跡方程.

           當(dāng)時(shí),P點(diǎn)的軌跡是圓.     6分

       (II)由題設(shè)知直線的方程為

           設(shè)

           聯(lián)立方程組

           消去     8分

    * 方程組有兩個不等解,

          

          

           而

               10分

           當(dāng)

           當(dāng)

           當(dāng)

           綜上,      13分

    21.解:(1)

              1分

           依題意有

          

           解得

                4分

       (2).

           依題意,是方程的兩個根,

          

          

          

                   6分

           設(shè)

           由;

           由

           所以函數(shù)在區(qū)間上是增函數(shù),在區(qū)間[4,6]上是減函數(shù).

           有極大值為96,

           上的最大值為96.

                  9分

       (III)的兩根,

           .

          

           ∴

    =          11分

           ∵,

          

           即

          

           成立          13分

     

     


    同步練習(xí)冊答案