焦點(diǎn)的距離之和為4. 查看更多

 

題目列表(包括答案和解析)

給出以下四個(gè)命題:

①動(dòng)點(diǎn)到兩定點(diǎn)的距離之和為4,則點(diǎn)的軌跡為橢圓;

為拋物線(xiàn)上一點(diǎn),為焦點(diǎn),定點(diǎn),則的最小值3;

③函數(shù)上單調(diào)遞增;

④定義在R上的可導(dǎo)函數(shù)滿(mǎn)足,則

一定成立.其中,所有真命題的序號(hào)是           .

 

查看答案和解析>>

給出以下四個(gè)命題:
①動(dòng)點(diǎn)到兩定點(diǎn)的距離之和為4,則點(diǎn)的軌跡為橢圓;
為拋物線(xiàn)上一點(diǎn),為焦點(diǎn),定點(diǎn),則的最小值3;
③函數(shù)上單調(diào)遞增;
④定義在R上的可導(dǎo)函數(shù)滿(mǎn)足,,則
一定成立.其中,所有真命題的序號(hào)是          .

查看答案和解析>>

已知橢圓數(shù)學(xué)公式上任意一點(diǎn)到兩焦點(diǎn)距離之和為4,直線(xiàn)x+4=0為該橢圓的一條準(zhǔn)線(xiàn).
(I)求橢圓C的方程;
(II)設(shè)直線(xiàn)l:y=kx+2與橢圓C交于不同的兩點(diǎn)A、B,且數(shù)學(xué)公式(其中O為坐標(biāo)原點(diǎn)),求直線(xiàn)l的斜率k的取值范圍.

查看答案和解析>>

已知橢圓上任意一點(diǎn)到兩焦點(diǎn)距離之和為4,直線(xiàn)x+4=0為該橢圓的一條準(zhǔn)線(xiàn).
(I)求橢圓C的方程;
(II)設(shè)直線(xiàn)l:y=kx+2與橢圓C交于不同的兩點(diǎn)A、B,且(其中O為坐標(biāo)原點(diǎn)),求直線(xiàn)l的斜率k的取值范圍.

查看答案和解析>>

一橢圓其中心在原點(diǎn),焦點(diǎn)在同一坐標(biāo)軸上,焦距為2
13
,一雙曲線(xiàn)和這橢圓有公共焦點(diǎn),且雙曲線(xiàn)的半實(shí)軸比橢圓的長(zhǎng)半軸長(zhǎng)小4,且雙曲線(xiàn)的離心率與橢圓的離心率之比為7:3,求橢圓和雙曲線(xiàn)的方程.

查看答案和解析>>

說(shuō)明:1.參考答案與評(píng)分標(biāo)準(zhǔn)指出了每道題要考查的主要知識(shí)和能力,并給出了一種或幾種解法供參考,如果考生的解法與參考答案不同,可根據(jù)試題主要考查的知識(shí)點(diǎn)和能力比照評(píng)分標(biāo)準(zhǔn)給以相應(yīng)的分?jǐn)?shù).

      2.對(duì)解答題中的計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的得分,但所給分?jǐn)?shù)不得超過(guò)該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

      3.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

4.只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.

 

一、選擇題:本大題主要考查基本知識(shí)和基本運(yùn)算.共10小題,每小題5分,滿(mǎn)分50分.

   

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

C

A

B

A

B

C

D

C

B

D

 

二、填空題:本大題主要考查基本知識(shí)和基本運(yùn)算.本大題共5小題,考生作答4小題,每小題5分,滿(mǎn)分20分.其中14~15題是選做題,考生只能選做一題.

11.      12.    13.     14.    15.2

說(shuō)明:第14題答案可以有多種形式,如可答Z)等, 均給滿(mǎn)分.

三、解答題:本大題共6小題,滿(mǎn)分80分.解答須寫(xiě)出文字說(shuō)明、證明過(guò)程和演算步驟.

 

16.(本小題滿(mǎn)分12分)           

解:(1)∵

                                        …… 2分

                                   …… 4分       

             .                                  …… 6分

.                                             …… 8分

(2) 當(dāng)時(shí), 取得最大值, 其值為2 .               ……10分

此時(shí),即Z.                 ……12分

 

17. (本小題滿(mǎn)分12分)

解:(1) 由頻率分布條形圖知,抽取的學(xué)生總數(shù)為人.         ……4分   

∵各班被抽取的學(xué)生人數(shù)成等差數(shù)列,設(shè)其公差為,

=100,解得.

∴各班被抽取的學(xué)生人數(shù)分別是22人,24人,26人,28人.     ……8分

(2) 在抽取的學(xué)生中,任取一名學(xué)生, 則分?jǐn)?shù)不小于90分的概率為0.35+0.25+0.1+0.05=0.75.

……12分

18.(本小題滿(mǎn)分14分)

解:(1)∵ ⊥平面,平面,     

.                                                …… 2分   

,

⊥平面,                                         …… 4分

平面,

.                                                …… 6分

(2)法1: 取線(xiàn)段的中點(diǎn),的中點(diǎn),連結(jié),

是△中位線(xiàn).

,,               ……8分

,,

.

∴ 四邊形是平行四邊形,            ……10分

.

平面平面,

∥平面.                                          ……12分   

∴ 線(xiàn)段的中點(diǎn)是符合題意要求的點(diǎn).                      ……14分

 法2: 取線(xiàn)段的中點(diǎn)的中點(diǎn),連結(jié),

是△的中位線(xiàn).

,                 

平面, 平面,

平面.                         …… 8分

,,

.

∴ 四邊形是平行四邊形,             

.

平面,平面

∥平面.                                        ……10分

,

∴平面平面.

平面,

∥平面.                                          ……12分

∴ 線(xiàn)段的中點(diǎn)是符合題意要求的點(diǎn).                     ……14分

19. (本小題滿(mǎn)分14分)

解:(1)依題意知,                                      …… 2分           

    ∵,

.                                     …… 4分

∴所求橢圓的方程為.                               …… 6分

(2)∵ 點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)為,

                                       …… 8分

解得:,.                            …… 10分

 

.                                              …… 12分

∵ 點(diǎn)在橢圓:上,

, 則.

的取值范圍為.                                ……14分

20. (本小題滿(mǎn)分14分)

(1) 解:當(dāng)時(shí),.                                        ……1分

   當(dāng)時(shí),

.                                        ……3分

不適合上式,

                                       ……4分

(2)證明: ∵.

當(dāng)時(shí),                                         ……6分

當(dāng)時(shí),,          ①

.  、

①-②得:

                

,                             ……8分

此式當(dāng)時(shí)也適合.

N.                                 

           ∵,

.                                              ……10分

當(dāng)時(shí),,

.                                     ……12分

,

.                                    

,即.

綜上,.                              ……14分

 

21. (本小題滿(mǎn)分14分)

解:(1)當(dāng)時(shí),,

.                     

       令=0, 得 .                                    …… 2分                   

當(dāng)時(shí),, 則上單調(diào)遞增;

當(dāng)時(shí),, 則上單調(diào)遞減;

當(dāng)時(shí),, 上單調(diào)遞增.                    …… 4分   

∴ 當(dāng)時(shí), 取得極大值為;

當(dāng)時(shí), 取得極小值為.        …… 6分

(2) ∵ =

∴△= =  .                             

① 若a≥1,則△≤0,                                           …… 7分

≥0在R上恒成立,

∴ f(x)在R上單調(diào)遞增 .                                                    

∵f(0),,                  

∴當(dāng)a≥1時(shí),函數(shù)f(x)的圖象與x軸有且只有一個(gè)交點(diǎn).        …… 9分 

② 若a<1,則△>0,

= 0有兩個(gè)不相等的實(shí)數(shù)根,不妨設(shè)為x1,x2,(x1<x2).

∴x1+x2 = 2,x1x2 = a.  

當(dāng)變化時(shí),的取值情況如下表:                        

x

x1

(x1,x2

x2

+

0

0

+

f(x)

極大值

 

極小值

 

                                       …… 11分

,

.

       

       

        .

同理.

.

          令f(x1)?f(x2)>0,  解得a>.                                    

          而當(dāng)時(shí),,

          故當(dāng)時(shí), 函數(shù)f(x)的圖象與x軸有且只有一個(gè)交點(diǎn).         …… 13分                             

綜上所述,a的取值范圍是.                                …… 14分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案