(1)求此拋物線的解析式及頂點(diǎn)D的坐標(biāo),(2)拋物線與x軸的另一交點(diǎn)為C.在直線CB上是否存在一點(diǎn)P.使四邊形PDCO為梯形?若存在.求出P點(diǎn)坐標(biāo).若不存在.說(shuō)明理由.八.解答題: 查看更多

 

題目列表(包括答案和解析)

拋物線y=ax2+2x+3(a<0)交X軸于A,B兩點(diǎn),交Y軸于點(diǎn)C,頂點(diǎn)為D,而且經(jīng)過(guò)點(diǎn)(2,3)。
(1)寫出拋物線的解析式及C、D兩點(diǎn)的坐標(biāo);
(2)連結(jié)BC,以BC為邊向右作正方形BCEF,求E、F兩點(diǎn)的坐標(biāo);
(3)若將此拋物線沿其對(duì)稱軸向上平移,試判斷平移后的拋物線是否會(huì)同時(shí)經(jīng)過(guò)正方形BCEF的兩個(gè)頂點(diǎn)E、F;若能,寫出平移后的拋物線解析式,若不能,請(qǐng)說(shuō)明理由。

查看答案和解析>>

精英家教網(wǎng)某拋物線是由拋物線y=-2x2向左平移2個(gè)單位得到.
(1)求拋物線的解析式,并畫出此拋物線的大致圖象;
(2)設(shè)拋物線的頂點(diǎn)為A,與y軸的交點(diǎn)為B.
①求線段AB的長(zhǎng)及直線AB的解析式;
②在此拋物線的對(duì)稱軸上是否存在點(diǎn)C,使△ABC為等腰三角形?若存在,求出這樣的點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

某拋物線是由拋物線y=-2x2向左平移2個(gè)單位得到.
(1)求拋物線的解析式,并畫出此拋物線的大致圖象;
(2)設(shè)拋物線的頂點(diǎn)為A,與y軸的交點(diǎn)為B.
①求線段AB的長(zhǎng)及直線AB的解析式;
②在此拋物線的對(duì)稱軸上是否存在點(diǎn)C,使△ABC為等腰三角形?若存在,求出這樣的點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

某拋物線是由拋物線y=-2x2向左平移2個(gè)單位得到.
(1)求拋物線的解析式,并畫出此拋物線的大致圖象;
(2)設(shè)拋物線的頂點(diǎn)為A,與y軸的交點(diǎn)為B.
①求線段AB的長(zhǎng)及直線AB的解析式;
②在此拋物線的對(duì)稱軸上是否存在點(diǎn)C,使△ABC為等腰三角形?若存在,求出這樣的點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知拋物線y=ax2+bx+c過(guò)點(diǎn)A(1,
32
),其頂點(diǎn)E的橫坐標(biāo)為2,此拋物線與x軸分別交于B(x1,0),C(x2,0)兩點(diǎn)(x1<x2),且x12+x22=16.
(1)求此拋物線的解析式及頂點(diǎn)E的坐標(biāo);
(2)若D是y軸上一點(diǎn),且△CDE為等腰三角形,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

一、選擇題:(共8個(gè)小題,每小題4分,共32分)

題號(hào)

1

2

3

4

5

6

7

8

答案

C

B

C

B

A

D

D

A

二、填空題:(共4個(gè)小題,每小題4分,共16分)

9.x≥-3    10.2(x-1)2    11.60°    12.±1

三、解答題:(共5個(gè)小題,每小題5分,共25分)

13.解:原式=+1+2-6×.                     4分

            =3.                                      5分

14.解:去分母,得3(x+1)+2x(x-1)=2(x-1)(x+1).        2分

去括號(hào),得3x+3+2x2-2x=2x2-2.                       3分

解得x=-5.                                          4分

經(jīng)檢驗(yàn)x=-5是原方程的解.                          5分

∴原方程的解是x=-5.

15.解:x(x2-x)+x2(6-x)+3=x3-x2+6x2-x3+3.           3分

=5x2+3.                                             4分

∴原式=13.                                          5分

16.證明:∵△ABC是等邊三角形,

∴∠ABC=∠ACB=60°.BC=CA.                        2分

∴∠DBC=∠ECA=180°-60°=120°.                 3分

在△DBC與△ECA中,

∴△DBC≌△ECA.                                 4分

∴DC=AE.                                        5分

17.解:過(guò)點(diǎn)A、D分別作AE⊥BC、DF⊥BF,垂足分別為點(diǎn)E、F.       1分

(第17題圖)

在Rt△DCF中,∠DFC=90°.

由CD=4,cos∠C=,

得CF=CD?cos∠C=4×=1.                       2分

在梯形ABCD中,由AD∥BC,AB=CD,

∴∠B=∠C.

同理:BE=1                                        3分

易證四邊形AEFD為矩形.

∴EF=AD=4                                        4分

∴BC=6

∴梯形ABCD的周長(zhǎng)為AD+AB+DC+BC=18             5分

四、解答題:(共2個(gè)小題,每小題5分,共10分)

18.解:(1)因?yàn)橐淮魏瘮?shù)y=2x-1的圖象經(jīng)過(guò)點(diǎn)(k,5),

∴5=2k-1.

∴k=3.

所以反比例函數(shù)的解析式為y=.                    2分

(2)由題意得:

解這個(gè)方程組得:                  4分

因?yàn)辄c(diǎn)A在等一象限,則x>0,y>0

所以點(diǎn)A的坐標(biāo)為(,2).                         5分

19.(1)2400.                                      2分

(2)如圖.                                          3分

(3)∵200×=50(萬(wàn)人),

∴18~23歲的網(wǎng)癮人數(shù)約有50萬(wàn)人.                5分

五、解答題:(共2個(gè)小題,每小題5分,共10分)

20.解:設(shè)日用品類的銷售額為x萬(wàn)元,煙酒類的銷售額為y萬(wàn)元.    1分

依題意得,                                3分

解得                                                   4分

答:日用品的銷售額為12萬(wàn)元,煙酒類銷售額為60萬(wàn)元.            5分

21.(1)證明:∵AB=AC,∴∠ABC=∠C,

∵∠C=∠D,∴∠ABC=∠D.

又∵∠BAE=∠DAB,

∴△ABE~△ADB.                                              2分

(2)連接OA.

∵BD為⊙O的直徑,∴∠BAD=90°.

Rt△BAD中,tan∠ADB=.

∴∠ADB=30°

∵AB=BD,BF=BO=AB.

∴△ABO是等邊三角形.∴∠ABO=∠OAB=60°.

又可得∠BAF=30°.

∴∠OAF=∠OAB+∠BAF=90°.

∴FA是⊙O的切線.                                           5分

六、解答題:(本題滿分5分)

22.(1)(2)各2分,(3)答案不唯一     1分.

七、解答題:(本題滿分7分)

23.解:(1)根據(jù)題意,得解得

∴拋物線的解析式為y=-x2-4x+5.                        2分

頂點(diǎn)D的坐標(biāo)為(-2,9).                                3分

(2)由拋物線的解析式y(tǒng)=-x2-4x+5.可得C點(diǎn)的坐標(biāo)為(-5,0).

∵B點(diǎn)的坐標(biāo)為(0,5),

∴直線CB的解析式為y=x+5.

<?>當(dāng)OP∥CD,且OP≠CD時(shí),四邊形PDCO為梯形.

∵直線CD的解析式為y=3x+15,OP∥CD,

∴直線OP的解析式為y=3x.

根據(jù)題意,得解得

∴點(diǎn)P .

∵OP=,CD=,

∴OP≠CD.

∴點(diǎn)P 即為所求.                                             5分

<ii>當(dāng)DP∥CO,且DP≠CO時(shí),四邊形PDCO為梯形.

根據(jù)題意,  解得

∴點(diǎn)P(4,9).

∵OC=5,DP=6,

∴OC≠DP.

∴點(diǎn)P(4,9)即為所求.                                               7分

綜上所述,使四邊形PDCO為梯形的點(diǎn)P分別是P1,P2(4,9).

八、解答題:(本題滿分7分)

24.(1)∵SPOA?SPBC =×50×15××50×35=252×15×35,

SPAB?SPOC=×50×30××50×20=252×30×20,

∴SPOA?SPBC≠SPAB?SPOC.                                         2分

∴P(20,15)不是“好點(diǎn)”.                                            3分

(2)設(shè)P(x,y)其中x,y均為正整數(shù),且0<x<50,0<y<50.               4分

由SPOA?SPBC=SPAB?SPOC,

得y(50-y)=x(50-x),

(x-y)(x+y-50)=0

∴x=y或x+y=50.                                                   6分

于是,點(diǎn)P在對(duì)角線OB或AC上.

故滿足條件的好點(diǎn)共有2×49-1=97個(gè).                               7分

九、解答題:(本題滿分8分)

解:(1)S四邊形AEDF=.                                               1分

(2)過(guò)點(diǎn)D作DM⊥AB,垂足為點(diǎn)M,

y=BE?DM=(3-x)?(3-x)(0≤x≤3).                         3分

(3)<i>如圖a:連接AD,過(guò)點(diǎn)D分別作AB、AC的垂線,垂足為M,N

圖a

∵AB=AC=3,∠BAC=90°,

∴BC=

∵BD=2CD,∴BD=,CD=

易得,DN=1,DM=2,

易證∠1=∠2,

∠DME=∠DNF=90°

∴△DME∽△DNF.  ∴.

∴ME=2(x-1).

∴AE=2(x-1)+1=2x-1.

∴y=SADE+SADF=(2x-1)?2+(3-x)?1=x+(1<x≤2).                   6分

<ii>如圖b:過(guò)點(diǎn)D作AC的垂線,垂足為N,

圖b

∵AB=AC=3,∠BAC=90°,

∴BC=

∵BD=2CD,∴BD=,CD=

易得,DN=1,y=SABC-SCDF =?1=(2<x≤3)                       8分

∴y=

 


同步練習(xí)冊(cè)答案