設(shè)B球在最高點(diǎn)的速度為.由牛頓第二定律得: ② 查看更多

 

題目列表(包括答案和解析)

第六部分 振動和波

第一講 基本知識介紹

《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細(xì)的補(bǔ)充。

一、簡諧運(yùn)動

1、簡諧運(yùn)動定義:= -k             

凡是所受合力和位移滿足①式的質(zhì)點(diǎn),均可稱之為諧振子,如彈簧振子、小角度單擺等。

諧振子的加速度:= -

2、簡諧運(yùn)動的方程

回避高等數(shù)學(xué)工具,我們可以將簡諧運(yùn)動看成勻速圓周運(yùn)動在某一條直線上的投影運(yùn)動(以下均看在x方向的投影),圓周運(yùn)動的半徑即為簡諧運(yùn)動的振幅A 。

依據(jù):x = -mω2Acosθ= -mω2

對于一個給定的勻速圓周運(yùn)動,m、ω是恒定不變的,可以令:

2 = k 

這樣,以上兩式就符合了簡諧運(yùn)動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運(yùn)動的相關(guān)規(guī)律。從圖1不難得出——

位移方程: = Acos(ωt + φ)                                        ②

速度方程: = -ωAsin(ωt +φ)                                     ③

加速度方程:= -ω2A cos(ωt +φ)                                   ④

相關(guān)名詞:(ωt +φ)稱相位,φ稱初相。

運(yùn)動學(xué)參量的相互關(guān)系:= -ω2

A = 

tgφ= -

3、簡諧運(yùn)動的合成

a、同方向、同頻率振動合成。兩個振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得

A =  ,φ= arctg 

顯然,當(dāng)φ2-φ1 = 2kπ時(k = 0,±1,±2,…),合振幅A最大,當(dāng)φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),合振幅最小。

b、方向垂直、同頻率振動合成。當(dāng)質(zhì)點(diǎn)同時參與兩個垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時,這兩個振動方程事實(shí)上已經(jīng)構(gòu)成了質(zhì)點(diǎn)在二維空間運(yùn)動的軌跡參數(shù)方程,消去參數(shù)t后,得一般形式的軌跡方程為

+-2cos(φ2-φ1) = sin22-φ1)

顯然,當(dāng)φ2-φ1 = 2kπ時(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運(yùn)動仍為簡諧運(yùn)動;

當(dāng)φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運(yùn)動不再是簡諧運(yùn)動;

當(dāng)φ2-φ1取其它值,軌跡將更為復(fù)雜,稱“李薩如圖形”,不是簡諧運(yùn)動。

c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運(yùn)動x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運(yùn)動是振動,但不是簡諧運(yùn)動,稱為角頻率為的“拍”現(xiàn)象。

4、簡諧運(yùn)動的周期

由②式得:ω=  ,而圓周運(yùn)動的角速度和簡諧運(yùn)動的角頻率是一致的,所以

T = 2π                                                      

5、簡諧運(yùn)動的能量

一個做簡諧運(yùn)動的振子的能量由動能和勢能構(gòu)成,即

mv2 + kx2 = kA2

注意:振子的勢能是由(回復(fù)力系數(shù))k和(相對平衡位置位移)x決定的一個抽象的概念,而不是具體地指重力勢能或彈性勢能。當(dāng)我們計量了振子的抽象勢能后,其它的具體勢能不能再做重復(fù)計量。

6、阻尼振動、受迫振動和共振

和高考要求基本相同。

二、機(jī)械波

1、波的產(chǎn)生和傳播

產(chǎn)生的過程和條件;傳播的性質(zhì),相關(guān)參量(決定參量的物理因素)

2、機(jī)械波的描述

a、波動圖象。和振動圖象的聯(lián)系

b、波動方程

如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個振動質(zhì)點(diǎn)的振動方程便是

y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕

這個方程展示的是一個復(fù)變函數(shù)。對任意一個時刻t ,都有一個y(x)的正弦函數(shù),在x-y坐標(biāo)下可以描繪出一個瞬時波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。

3、波的干涉

a、波的疊加。幾列波在同一介質(zhì)種傳播時,能獨(dú)立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。

b、波的干涉。兩列波頻率相同、相位差恒定時,在同一介質(zhì)中的疊加將形成一種特殊形態(tài):振動加強(qiáng)的區(qū)域和振動削弱的區(qū)域穩(wěn)定分布且彼此隔開。

我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個波源,P表示空間任意一點(diǎn)。

當(dāng)振源的振動方向相同時,令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(diǎn)(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是

y1′= A1cos〔ω(t ? )〕

y2′= A2cos〔ω(t ? )〕

P點(diǎn)便出現(xiàn)兩個頻率相同、初相不同的振動疊加問題(φ1 =  ,φ2 = ),且初相差Δφ= (r2 – r1)。根據(jù)前面已經(jīng)做過的討論,有

r2 ? r1 = kλ時(k = 0,±1,±2,…),P點(diǎn)振動加強(qiáng),振幅為A1 + A2 ;

r2 ? r1 =(2k ? 1)時(k = 0,±1,±2,…),P點(diǎn)振動削弱,振幅為│A1-A2│。

4、波的反射、折射和衍射

知識點(diǎn)和高考要求相同。

5、多普勒效應(yīng)

當(dāng)波源或者接受者相對與波的傳播介質(zhì)運(yùn)動時,接收者會發(fā)現(xiàn)波的頻率發(fā)生變化。多普勒效應(yīng)的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對介質(zhì)的傳播速度v是恒定不變的)——

a、只有接收者相對介質(zhì)運(yùn)動(如圖3所示)

設(shè)接收者以速度v1正對靜止的波源運(yùn)動。

如果接收者靜止在A點(diǎn),他單位時間接收的波的個數(shù)為f ,

當(dāng)他迎著波源運(yùn)動時,設(shè)其在單位時間到達(dá)B點(diǎn),則= v1 ,、

在從A運(yùn)動到B的過程中,接收者事實(shí)上“提前”多接收到了n個波

n = 

顯然,在單位時間內(nèi),接收者接收到的總的波的數(shù)目為:f + n = f ,這就是接收者發(fā)現(xiàn)的頻率f。即

f

顯然,如果v1背離波源運(yùn)動,只要將上式中的v1代入負(fù)值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。

b、只有波源相對介質(zhì)運(yùn)動(如圖4所示)

設(shè)波源以速度v2正對靜止的接收者運(yùn)動。

如果波源S不動,在單位時間內(nèi),接收者在A點(diǎn)應(yīng)接收f個波,故S到A的距離:= fλ 

在單位時間內(nèi),S運(yùn)動至S′,即= v2 。由于波源的運(yùn)動,事實(shí)造成了S到A的f個波被壓縮在了S′到A的空間里,波長將變短,新的波長

λ′= 

而每個波在介質(zhì)中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>

f2 = 

當(dāng)v2背離接收者,或有一定夾角的討論,類似a情形。

c、當(dāng)接收者和波源均相對傳播介質(zhì)運(yùn)動

當(dāng)接收者正對波源以速度v1(相對介質(zhì)速度)運(yùn)動,波源也正對接收者以速度v2(相對介質(zhì)速度)運(yùn)動,我們的討論可以在b情形的過程上延續(xù)…

f3 =  f2 = 

關(guān)于速度方向改變的問題,討論類似a情形。

6、聲波

a、樂音和噪音

b、聲音的三要素:音調(diào)、響度和音品

c、聲音的共鳴

第二講 重要模型與專題

一、簡諧運(yùn)動的證明與周期計算

物理情形:如圖5所示,將一粗細(xì)均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當(dāng)水銀受到一個初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運(yùn)動,并求其周期。

模型分析:對簡諧運(yùn)動的證明,只要以汞柱為對象,看它的回復(fù)力與位移關(guān)系是否滿足定義式①,值得注意的是,回復(fù)力系指振動方向上的合力(而非整體合力)。當(dāng)簡諧運(yùn)動被證明后,回復(fù)力系數(shù)k就有了,求周期就是順理成章的事。

本題中,可設(shè)汞柱兩端偏離平衡位置的瞬時位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時的回復(fù)力

ΣF = ρg2xS = x

由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運(yùn)動。

周期T = 2π= 2π

答:汞柱的周期為2π 。

學(xué)生活動:如圖6所示,兩個相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉(zhuǎn)動,在滾輪上覆蓋一塊均質(zhì)的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質(zhì)量為m ,且木板放置時,重心不在兩滾輪的正中央。試證明木板做簡諧運(yùn)動,并求木板運(yùn)動的周期。

思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結(jié)合求兩處彈力→ú求摩擦力合力…

答案:木板運(yùn)動周期為2π 。

鞏固應(yīng)用:如圖7所示,三根長度均為L = 2.00m地質(zhì)量均勻直桿,構(gòu)成一正三角形框架ABC,C點(diǎn)懸掛在一光滑水平軸上,整個框架可繞轉(zhuǎn)軸轉(zhuǎn)動。桿AB是一導(dǎo)軌,一電動松鼠可在導(dǎo)軌上運(yùn)動,F(xiàn)觀察到松鼠正在導(dǎo)軌上運(yùn)動,而框架卻靜止不動,試討論松鼠的運(yùn)動是一種什么樣的運(yùn)動。

解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設(shè)松鼠的質(zhì)量為m ,即:

N = mg                            ①

再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點(diǎn)為轉(zhuǎn)軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:

MN = Mf

現(xiàn)考查松鼠在框架上的某個一般位置(如圖7,設(shè)它在導(dǎo)軌方向上距C點(diǎn)為x),上式即成:

N·x = f·Lsin60°                 ②

解①②兩式可得:f = x ,且f的方向水平向左。

根據(jù)牛頓第三定律,這個力就是松鼠在導(dǎo)軌方向上的合力。如果我們以C在導(dǎo)軌上的投影點(diǎn)為參考點(diǎn),x就是松鼠的瞬時位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關(guān)系——

= -k

其中k =  ,對于這個系統(tǒng)而言,k是固定不變的。

顯然這就是簡諧運(yùn)動的定義式。

答案:松鼠做簡諧運(yùn)動。

評說:這是第十三屆物理奧賽預(yù)賽試題,問法比較模糊。如果理解為定性求解,以上答案已經(jīng)足夠。但考慮到原題中還是有定量的條件,所以做進(jìn)一步的定量運(yùn)算也是有必要的。譬如,我們可以求出松鼠的運(yùn)動周期為:T = 2π = 2π = 2.64s 。

二、典型的簡諧運(yùn)動

1、彈簧振子

物理情形:如圖8所示,用彈性系數(shù)為k的輕質(zhì)彈簧連著一個質(zhì)量為m的小球,置于傾角為θ

查看答案和解析>>

第一部分  力&物體的平衡

第一講 力的處理

一、矢量的運(yùn)算

1、加法

表達(dá): +  =  。

名詞:為“和矢量”。

法則:平行四邊形法則。如圖1所示。

和矢量大。篶 =  ,其中α為的夾角。

和矢量方向:、之間,和夾角β= arcsin

2、減法

表達(dá): =  

名詞:為“被減數(shù)矢量”,為“減數(shù)矢量”,為“差矢量”。

法則:三角形法則。如圖2所示。將被減數(shù)矢量和減數(shù)矢量的起始端平移到一點(diǎn),然后連接兩時量末端,指向被減數(shù)時量的時量,即是差矢量。

差矢量大小:a =  ,其中θ為的夾角。

差矢量的方向可以用正弦定理求得。

一條直線上的矢量運(yùn)算是平行四邊形和三角形法則的特例。

例題:已知質(zhì)點(diǎn)做勻速率圓周運(yùn)動,半徑為R ,周期為T ,求它在T內(nèi)和在T內(nèi)的平均加速度大小。

解說:如圖3所示,A到B點(diǎn)對應(yīng)T的過程,A到C點(diǎn)對應(yīng)T的過程。這三點(diǎn)的速度矢量分別設(shè)為。

根據(jù)加速度的定義 得:,

由于有兩處涉及矢量減法,設(shè)兩個差矢量  , ,根據(jù)三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。

本題只關(guān)心各矢量的大小,顯然:

 =  =  =  ,且: =  , = 2

所以: =  =  , =  =  。

(學(xué)生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運(yùn)動是不是勻變速運(yùn)動?

答:否;不是。

3、乘法

矢量的乘法有兩種:叉乘和點(diǎn)乘,和代數(shù)的乘法有著質(zhì)的不同。

⑴ 叉乘

表達(dá):× = 

名詞:稱“矢量的叉積”,它是一個新的矢量。

叉積的大。篶 = absinα,其中α為的夾角。意義:的大小對應(yīng)由作成的平行四邊形的面積。

叉積的方向:垂直確定的平面,并由右手螺旋定則確定方向,如圖4所示。

顯然,××,但有:×= -×

⑵ 點(diǎn)乘

表達(dá):· = c

名詞:c稱“矢量的點(diǎn)積”,它不再是一個矢量,而是一個標(biāo)量。

點(diǎn)積的大。篶 = abcosα,其中α為的夾角。

二、共點(diǎn)力的合成

1、平行四邊形法則與矢量表達(dá)式

2、一般平行四邊形的合力與分力的求法

余弦定理(或分割成RtΔ)解合力的大小

正弦定理解方向

三、力的分解

1、按效果分解

2、按需要——正交分解

第二講 物體的平衡

一、共點(diǎn)力平衡

1、特征:質(zhì)心無加速度。

2、條件:Σ = 0 ,或  = 0 , = 0

例題:如圖5所示,長為L 、粗細(xì)不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標(biāo)示,求橫桿的重心位置。

解說:直接用三力共點(diǎn)的知識解題,幾何關(guān)系比較簡單。

答案:距棒的左端L/4處。

(學(xué)生活動)思考:放在斜面上的均質(zhì)長方體,按實(shí)際情況分析受力,斜面的支持力會通過長方體的重心嗎?

解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點(diǎn),由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點(diǎn),這時,N就過重心了)。

答:不會。

二、轉(zhuǎn)動平衡

1、特征:物體無轉(zhuǎn)動加速度。

2、條件:Σ= 0 ,或ΣM+ =ΣM- 

如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。

3、非共點(diǎn)力的合成

大小和方向:遵從一條直線矢量合成法則。

作用點(diǎn):先假定一個等效作用點(diǎn),然后讓所有的平行力對這個作用點(diǎn)的和力矩為零。

第三講 習(xí)題課

1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉(zhuǎn)動的夾板(β不定),夾板和斜面夾著一個質(zhì)量為m的光滑均質(zhì)球體,試求:β取何值時,夾板對球的彈力最小。

解說:法一,平行四邊形動態(tài)處理。

對球體進(jìn)行受力分析,然后對平行四邊形中的矢量G和N1進(jìn)行平移,使它們構(gòu)成一個三角形,如圖8的左圖和中圖所示。

由于G的大小和方向均不變,而N1的方向不可變,當(dāng)β增大導(dǎo)致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。

顯然,隨著β增大,N1單調(diào)減小,而N2的大小先減小后增大,當(dāng)N2垂直N1時,N2取極小值,且N2min = Gsinα。

法二,函數(shù)法。

看圖8的中間圖,對這個三角形用正弦定理,有:

 =  ,即:N2 =  ,β在0到180°之間取值,N2的極值討論是很容易的。

答案:當(dāng)β= 90°時,甲板的彈力最小。

2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F(xiàn)隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?

解說:靜力學(xué)旨在解決靜態(tài)問題和準(zhǔn)靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運(yùn)動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點(diǎn)。

靜力學(xué)的知識,本題在于區(qū)分兩種摩擦的不同判據(jù)。

水平方向合力為零,得:支持力N持續(xù)增大。

物體在運(yùn)動時,滑動摩擦力f = μN(yùn) ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關(guān)系。

對運(yùn)動過程加以分析,物體必有加速和減速兩個過程。據(jù)物理常識,加速時,f < G ,而在減速時f > G 。

答案:B 。

3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質(zhì)彈簧的勁度系數(shù)為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點(diǎn)A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點(diǎn)。試求彈簧與豎直方向的夾角θ。

解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學(xué)矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。

分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。

(學(xué)生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)

容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:

                                   ⑴

由胡克定律:F = k(- R)                ⑵

幾何關(guān)系:= 2Rcosθ                     ⑶

解以上三式即可。

答案:arccos 。

(學(xué)生活動)思考:若將彈簧換成勁度系數(shù)k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?

答:變。徊蛔。

(學(xué)生活動)反饋練習(xí):光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?

解:和上題完全相同。

答:T變小,N不變。

4、如圖14所示,一個半徑為R的非均質(zhì)圓球,其重心不在球心O點(diǎn),先將它置于水平地面上,平衡時球面上的A點(diǎn)和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點(diǎn)與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。

解說:練習(xí)三力共點(diǎn)的應(yīng)用。

根據(jù)在平面上的平衡,可知重心C在OA連線上。根據(jù)在斜面上的平衡,支持力、重力和靜摩擦力共點(diǎn),可以畫出重心的具體位置。幾何計算比較簡單。

答案:R 。

(學(xué)生活動)反饋練習(xí):靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?

解:三力共點(diǎn)知識應(yīng)用。

答: 。

4、兩根等長的細(xì)線,一端拴在同一懸點(diǎn)O上,另一端各系一個小球,兩球的質(zhì)量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?

解說:本題考查正弦定理、或力矩平衡解靜力學(xué)問題。

對兩球進(jìn)行受力分析,并進(jìn)行矢量平移,如圖16所示。

首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設(shè)為α。

而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設(shè)為F 。

對左邊的矢量三角形用正弦定理,有:

 =          ①

同理,對右邊的矢量三角形,有: =                                ②

解①②兩式即可。

答案:1 : 。

(學(xué)生活動)思考:解本題是否還有其它的方法?

答:有——將模型看成用輕桿連成的兩小球,而將O點(diǎn)看成轉(zhuǎn)軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。

應(yīng)用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?

解:此時用共點(diǎn)力平衡更加復(fù)雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。

答:2 :3 。

5、如圖17所示,一個半徑為R的均質(zhì)金屬球上固定著一根長為L的輕質(zhì)細(xì)桿,細(xì)桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細(xì)桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現(xiàn)要將木板繼續(xù)向左插進(jìn)一些,至少需要多大的水平推力?

解說:這是一個典型的力矩平衡的例題。

以球和桿為對象,研究其對轉(zhuǎn)軸O的轉(zhuǎn)動平衡,設(shè)木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:

f R + N(R + L)= G(R + L)           

球和板已相對滑動,故:f = μN(yùn)        ②

解①②可得:f = 

再看木板的平衡,F(xiàn) = f 。

同理,木板插進(jìn)去時,球體和木板之間的摩擦f′=  = F′。

答案: 。

第四講 摩擦角及其它

一、摩擦角

1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。

2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。

此時,要么物體已經(jīng)滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達(dá)到最大運(yùn)動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 。

3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。

二、隔離法與整體法

1、隔離法:當(dāng)物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。

在處理各隔離方程之間的聯(lián)系時,應(yīng)注意相互作用力的大小和方向關(guān)系。

2、整體法:當(dāng)各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進(jìn)行分析處理,稱整體法。

應(yīng)用整體法時應(yīng)注意“系統(tǒng)”、“內(nèi)力”和“外力”的涵義。

三、應(yīng)用

1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進(jìn)。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進(jìn),求物體與水平面之間的動摩擦因素μ。

解說:這是一個能顯示摩擦角解題優(yōu)越性的題目?梢酝ㄟ^不同解法的比較讓學(xué)生留下深刻印象。

法一,正交分解。(學(xué)生分析受力→列方程→得結(jié)果。)

法二,用摩擦角解題。

引進(jìn)全反力R ,對物體兩個平衡狀態(tài)進(jìn)行受力分析,再進(jìn)行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。

再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。

最后,μ= tgφm 。

答案:0.268 。

(學(xué)生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進(jìn)的最小F值是多少?

解:見圖18,右圖中虛線的長度即Fmin ,所以,F(xiàn)min = Gsinφm 

答:Gsin15°(其中G為物體的重量)。

2、如圖19所示,質(zhì)量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運(yùn)動,而斜面體始終靜止。已知斜面的質(zhì)量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。

解說:

本題旨在顯示整體法的解題的優(yōu)越性。

法一,隔離法。簡要介紹……

法二,整體法。注意,滑塊和斜面隨有相對運(yùn)動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。

做整體的受力分析時,內(nèi)力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。

答案:26.0N 。

(學(xué)生活動)地面給斜面體的支持力是多少?

解:略。

答:135N 。

應(yīng)用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質(zhì)量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。

解說:這是一道難度較大的靜力學(xué)題,可以動用一切可能的工具解題。

法一:隔離法。

由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ

對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。

對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——

Fx = f + mgsinθ

Fy + mgcosθ= N

且 f = μN(yùn) = Ntgθ

綜合以上三式得到:

Fx = Fytgθ+ 2mgsinθ               ①

對斜面體,只看水平方向平衡就行了——

P = fcosθ+ Nsinθ

即:4mgsinθcosθ=μN(yùn)cosθ+ Nsinθ

代入μ值,化簡得:Fy = mgcosθ      ②

②代入①可得:Fx = 3mgsinθ

最后由F =解F的大小,由tgα= 解F的方向(設(shè)α為F和斜面的夾角)。

答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內(nèi)部。

法二:引入摩擦角和整體法觀念。

仍然沿用“法一”中關(guān)于F的方向設(shè)置(見圖21中的α角)。

先看整體的水平方向平衡,有:Fcos(θ- α) = P                                   ⑴

再隔離滑塊,分析受力時引進(jìn)全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構(gòu)成一個三角形,如圖22所示。

在圖22右邊的矢量三角形中,有: =      ⑵

注意:φ= arctgμ= arctg(tgθ) = θ                                              ⑶

解⑴⑵⑶式可得F和α的值。

查看答案和解析>>

第二部分  牛頓運(yùn)動定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態(tài)困惑”

二、牛頓第二定律

1、定律

2、理解要點(diǎn)

a、矢量性

b、獨(dú)立作用性:ΣF → a ,ΣFx → ax 

c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點(diǎn)

a、同性質(zhì)(但不同物體)

b、等時效(同增同減)

c、無條件(與運(yùn)動狀態(tài)、空間選擇無關(guān))

第二講 牛頓定律的應(yīng)用

一、牛頓第一、第二定律的應(yīng)用

單獨(dú)應(yīng)用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。

應(yīng)用要點(diǎn):合力為零時,物體靠慣性維持原有運(yùn)動狀態(tài);只有物體有加速度時才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達(dá)的驅(qū)動下,皮帶運(yùn)輸機(jī)上方的皮帶以恒定的速度向右運(yùn)動,F(xiàn)將一工件(大小不計)在皮帶左端A點(diǎn)輕輕放下,則在此后的過程中(      

A、一段時間內(nèi),工件將在滑動摩擦力作用下,對地做加速運(yùn)動

B、當(dāng)工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力

C、當(dāng)工件相對皮帶靜止時,它位于皮帶上A點(diǎn)右側(cè)的某一點(diǎn)

D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)

解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。

較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因?yàn)槿耸强梢孕巫、重心可以調(diào)節(jié)的特殊“物體”)

此外,本題的D選項還要用到勻變速運(yùn)動規(guī)律。用勻變速運(yùn)動規(guī)律和牛頓第二定律不難得出

只有當(dāng)L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達(dá)皮帶右端的時間t(過程略,答案為5.5s)

進(jìn)階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進(jìn)行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:

① 如果在P處剪斷細(xì)繩,在剪斷瞬時,B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?

解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。

第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點(diǎn)剪斷彈簧時,彈簧卻是沒有慣性的(沒有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長!即彈簧彈力突變?yōu)榱恪?/p>

答案:0 ;g 。

二、牛頓第二定律的應(yīng)用

應(yīng)用要點(diǎn):受力較少時,直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時,結(jié)合正交分解與“獨(dú)立作用性”解題。

在難度方面,“瞬時性”問題相對較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說:受力分析 → 根據(jù)“矢量性”定合力方向  牛頓第二定律應(yīng)用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應(yīng)具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)

進(jìn)階練習(xí)1:在一向右運(yùn)動的車廂中,用細(xì)繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進(jìn)階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運(yùn)動,車廂頂用細(xì)繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。

解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。

分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運(yùn)用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運(yùn)動。斜面上用一條與斜面平行的細(xì)繩系一質(zhì)量為m的小球,當(dāng)斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。

解說:當(dāng)力的個數(shù)較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應(yīng)牛頓第二定律的“獨(dú)立作用性”列方程。

正交坐標(biāo)的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨(dú)立地解張力T 。將正交分解的坐標(biāo)選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標(biāo)軸上,是需要分解的。矢量分解后,如圖8所示。

根據(jù)獨(dú)立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨(dú)立解T值是成功的。結(jié)果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當(dāng)a>ctgθ時,張力T的結(jié)果會變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)

學(xué)生活動:用正交分解法解本節(jié)第2題“進(jìn)階練習(xí)2”

進(jìn)階練習(xí):如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當(dāng)扶梯以a = 4m/s2的加速度向上運(yùn)動時,站在扶梯上質(zhì)量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。

解:這是一個展示獨(dú)立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(biāo)(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進(jìn)而充分領(lǐng)會用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。

解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。

(學(xué)生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現(xiàn)象?原因是什么?

結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時調(diào)節(jié)”這一難點(diǎn)(從即將開始的運(yùn)動來反推)。

知識點(diǎn),牛頓第二定律的瞬時性。

答案:a = gsinθ ;a = gtgθ 。

應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當(dāng)懸掛吊籃的細(xì)繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應(yīng)用

要點(diǎn):在動力學(xué)問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進(jìn)“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時地運(yùn)用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。

對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。

補(bǔ)充:當(dāng)多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導(dǎo)過程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個長為L的均質(zhì)直棒,現(xiàn)給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?

解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結(jié)論又如何?

解:分兩種情況,(1)能拉動;(2)不能拉動。

第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結(jié)論的化簡也麻煩一些。

第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動,結(jié)論不變。

若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當(dāng)x<(L-l),N≡0 ;當(dāng)x>(L-l),N = 〔x -〈L-l〉〕。

應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對盒子的哪一側(cè)內(nèi)壁有壓力?

解:略。

答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內(nèi)壁均無壓力,若斜面粗糙,對斜面上方的內(nèi)壁有壓力。

2、如圖15所示,三個物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質(zhì)量也不計,為使三個物體無相對滑動,水平推力F應(yīng)為多少?

解說:

此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學(xué)方程;整體有一個動力學(xué)方程。就足以解題了。

答案:F =  。

思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當(dāng)?shù)腇′,使三者無相對運(yùn)動?如果沒有,說明理由;如果有,求出這個F′的值。

解:此時,m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當(dāng)m1 ≤ m2時,沒有適應(yīng)題意的F′;當(dāng)m1 > m2時,適應(yīng)題意的F′=  。

3、一根質(zhì)量為M的木棒,上端用細(xì)繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示,F(xiàn)將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?

解說:法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學(xué)方程,解方程組即可。

法二,“新整體法”。

據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當(dāng)系統(tǒng)中各個體的加速度不相等時,經(jīng)典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。

解題思想:抓某個方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、

1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說:本題涉及兩個物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務(wù)必在這個方向上進(jìn)行突破。

(學(xué)生活動)定型判斷斜面的運(yùn)動情況、滑塊的運(yùn)動情況。

位移矢量示意圖如圖19所示。根據(jù)運(yùn)動學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。

(學(xué)生活動)這兩個加速度矢量有什么關(guān)系?

沿斜面方向、垂直斜面方向建x 、y坐標(biāo),可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學(xué)生活動)思考:如何求a1的值?

解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當(dāng)棒保持傾角θ不變地沿水平面勻加速運(yùn)動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經(jīng)歷的時間。

解說:這是一個比較特殊的“連接體問題”,尋求運(yùn)動學(xué)參量的關(guān)系似乎比動力學(xué)分析更加重要。動力學(xué)方面,只需要隔離滑套C就行了。

(學(xué)生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)

定性繪出符合題意的運(yùn)動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標(biāo)后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設(shè)全程時間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進(jìn)動力學(xué)在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡單。過程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對棒的加速度a是沿棒向上的,故動力學(xué)方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識出版社,2002年8月第一版。

例題選講針對“教材”第三章的部分例題和習(xí)題。

查看答案和解析>>

第三部分 運(yùn)動學(xué)

第一講 基本知識介紹

一. 基本概念

1.  質(zhì)點(diǎn)

2.  參照物

3.  參照系——固連于參照物上的坐標(biāo)系(解題時要記住所選的是參照系,而不僅是一個點(diǎn))

4.絕對運(yùn)動,相對運(yùn)動,牽連運(yùn)動:v=v+v 

二.運(yùn)動的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大學(xué)教材中表述為:v=dr/dt, 表示r對t 求導(dǎo)數(shù)

5.以上是運(yùn)動學(xué)中的基本物理量,也就是位移、位移的一階導(dǎo)數(shù)、位移的二階導(dǎo)數(shù)?墒

三階導(dǎo)數(shù)為什么不是呢?因?yàn)榕nD第二定律是F=ma,即直接和加速度相聯(lián)系。(a對t的導(dǎo)數(shù)叫“急動度”。)

6.由于以上三個量均為矢量,所以在運(yùn)算中用分量表示一般比較好

三.等加速運(yùn)動

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道經(jīng)典的物理問題:二次世界大戰(zhàn)中物理學(xué)家曾經(jīng)研究,當(dāng)大炮的位置固定,以同一速度v0沿各種角度發(fā)射,問:當(dāng)飛機(jī)在哪一區(qū)域飛行之外時,不會有危險?(注:結(jié)論是這一區(qū)域?yàn)橐粧佄锞,此拋物線是所有炮彈拋物線的包絡(luò)線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。) 

練習(xí)題:

一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個方向飛去。求碎片落到地板上的半徑(認(rèn)為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)

四.剛體的平動和定軸轉(zhuǎn)動

1. 我們講過的圓周運(yùn)動是平動而不是轉(zhuǎn)動 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是標(biāo)量,而極小的角位移是矢量

4.  同一剛體上兩點(diǎn)的相對速度和相對加速度 

兩點(diǎn)的相對距離不變,相對運(yùn)動軌跡為圓弧,VA=VB+VAB,在AB連線上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三質(zhì)點(diǎn)速度分別V,VB  ,VC      

求G的速度。

五.課后習(xí)題:

一只木筏離開河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經(jīng)過時間T木筏劃到路線上標(biāo)有符號處。河水速度恒定U用作圖法找到在2T,3T,4T時刻木筏在航線上的確切位置。

五、處理問題的一般方法

(1)用微元法求解相關(guān)速度問題

例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺上有一定滑輪D,一根輕繩一端固定在C點(diǎn),再繞過B、D,BC段水平,當(dāng)以恒定水平速度v拉繩上的自由端時,A沿水平面前進(jìn),求當(dāng)跨過B的兩段繩子的夾角為α?xí)r,A的運(yùn)動速度。

(vA

(2)拋體運(yùn)動問題的一般處理方法

  1. 平拋運(yùn)動
  2. 斜拋運(yùn)動
  3. 常見的處理方法

(1)將斜上拋運(yùn)動分解為水平方向的勻速直線運(yùn)動和豎直方向的豎直上拋運(yùn)動

(2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運(yùn)動學(xué)公式解題

(3)將斜拋運(yùn)動分解為沿初速度方向的斜向上的勻速直線運(yùn)動和自由落體運(yùn)動兩個分運(yùn)動,用矢量合成法則求解

例2:在擲鉛球時,鉛球出手時距地面的高度為h,若出手時的速度為V0,求以何角度擲球時,水平射程最遠(yuǎn)?最遠(yuǎn)射程為多少?

(α=、 x=

第二講 運(yùn)動的合成與分解、相對運(yùn)動

(一)知識點(diǎn)點(diǎn)撥

  1. 力的獨(dú)立性原理:各分力作用互不影響,單獨(dú)起作用。
  2. 運(yùn)動的獨(dú)立性原理:分運(yùn)動之間互不影響,彼此之間滿足自己的運(yùn)動規(guī)律
  3. 力的合成分解:遵循平行四邊形定則,方法有正交分解,解直角三角形等
  4. 運(yùn)動的合成分解:矢量合成分解的規(guī)律方法適用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

參考系的轉(zhuǎn)換:動參考系,靜參考系

相對運(yùn)動:動點(diǎn)相對于動參考系的運(yùn)動

絕對運(yùn)動:動點(diǎn)相對于靜參考系統(tǒng)(通常指固定于地面的參考系)的運(yùn)動

牽連運(yùn)動:動參考系相對于靜參考系的運(yùn)動

(5)位移合成定理:SA對地=SAB+SB對地

速度合成定理:V絕對=V相對+V牽連

加速度合成定理:a絕對=a相對+a牽連

(二)典型例題

(1)火車在雨中以30m/s的速度向南行駛,雨滴被風(fēng)吹向南方,在地球上靜止的觀察者測得雨滴的徑跡與豎直方向成21角,而坐在火車?yán)锍丝涂吹接甑蔚膹桔E恰好豎直方向。求解雨滴相對于地的運(yùn)動。

提示:矢量關(guān)系入圖

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動扶梯,為什么他可以根據(jù)測得的數(shù)據(jù)來計算自動扶梯的臺階數(shù)?

提示:V人對梯=n1/t1

      V梯對地=n/t2

      V人對地=n/t3

V人對地= V人對梯+ V梯對地

答案:n=t2t3n1/(t2-t3)t1

(3)某人駕船從河岸A處出發(fā)橫渡,如果使船頭保持跟河岸垂直的方向航行,則經(jīng)10min后到達(dá)正對岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經(jīng)過12.5min恰好到達(dá)正對岸的B處,求河的寬度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河寬l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時,不至于被沖進(jìn)瀑布中,船對水的最小速度為多少?

提示:如圖船航行

答案:1.58m/s

(三)同步練習(xí)

1.一輛汽車的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問汽車兩次速度之比為多少時,司機(jī)都是看見冰雹都是以豎直方向從車的正面玻璃上彈開?(冰雹相對地面是豎直下落的)

2、模型飛機(jī)以相對空氣v=39km/h的速度繞一個邊長2km的等邊三角形飛行,設(shè)風(fēng)速u = 21km/h ,方向與三角形的一邊平行并與飛機(jī)起飛方向相同,試求:飛機(jī)繞三角形一周需多少時間?

3.圖為從兩列蒸汽機(jī)車上冒出的兩股長幅氣霧拖尾的照片(俯視)。兩列車沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風(fēng)速。

4、細(xì)桿AB長L ,兩端分別約束在x 、 y軸上運(yùn)動,(1)試求桿上與A點(diǎn)相距aL(0< a <1)的P點(diǎn)運(yùn)動軌跡;(2)如果vA為已知,試求P點(diǎn)的x 、 y向分速度vPx和vPy對桿方位角θ的函數(shù)。

(四)同步練習(xí)提示與答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。

2、提示:三角形各邊的方向?yàn)轱w機(jī)合速度的方向(而非機(jī)頭的指向);

第二段和第三段大小相同。

參見右圖,顯然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法與練習(xí)一類似。答案為:3

4、提示:(1)寫成參數(shù)方程后消參數(shù)θ。

(2)解法有講究:以A端為參照, 則桿上各點(diǎn)只繞A轉(zhuǎn)動。但鑒于桿子的實(shí)際運(yùn)動情形如右圖,應(yīng)有v = vAcosθ,v轉(zhuǎn) = vA,可知B端相對A的轉(zhuǎn)動線速度為:v轉(zhuǎn) + vAsinθ=  。

P點(diǎn)的線速度必為  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>


同步練習(xí)冊答案