題目列表(包括答案和解析)
(09年萊陽一中期末文)(12分)
我們用部分自然數(shù)構(gòu)造如下的數(shù)表:用表示第
行第
個數(shù)為整數(shù)
,使
;每行中的其余各數(shù)分別等于其‘肩膀”上的兩個數(shù)之和(第一、二行除外,如圖),設(shè)第
(
為正整數(shù))行中各數(shù)之和為
。
(1) 試寫出并推測
和
的關(guān)系(無需證明);
(2) 證明數(shù)列是等比數(shù)列,并求數(shù)列
的通項公式
;
(3) 數(shù)列中是否存在不同的三項
恰好成等差數(shù)列?若存在求出
的關(guān)系;若不存在,請說明理由。
已知三個正整數(shù)按某種順序排列成等差數(shù)列。
(1)求的值;
(2)若等差數(shù)列的首項、公差都為
,等比數(shù)列
的首項、公比也都為
,前
項和分別為
,且
,求滿足條件的正整數(shù)
的最大值。
已知三個正整數(shù)按某種順序排列成等差數(shù)列。
(1)求的值;
(2)若等差數(shù)列的首項、公差都為
,等比數(shù)列
的首項、公比也都為
,前
項和分別為
,且
,求滿足條件的正整數(shù)
的最大值。
一、選擇題:本大題共10小題,每小題5分,共50分。
1.C 2.D 3.A 4.C 5.A 6.D 7.D 8.B 9.C 10.B
二、填空題:本答題共6小題,每小題4分,共24分。
11.= 22 12.
13.594 14.m=
15. 16.1,3
三、解答題:本大題共6小題,共76分。
17.(本小題滿分12分)
解:(1)將函數(shù)(ω>0)的圖象按向量
平移,平移后的圖象所對應(yīng)的解析式為
,由圖象知,
,所以
.
∴所求解析式為 (6分)
(2)∵sin(2α+)=sin2α?cos
+cos2αsin
=sinαcosα+
(cos2α-sin2α)
==
(10分)
將tanα=代入得
sin(2α+)=
=
(12分)
另解:由tanα=得:cosα=
,sinα=
。?
(10分)
∴sin(2α+)=sin2α?cos
+cos2α?sin
=sinαcosα+
(2cos2α-1)=
=
(12分)
18.(本小題滿分12分)
解:設(shè)開關(guān)JA,JB ,JC ,JD 能夠閉合的事件依次為A、B、C、D,則P(A)=P(D)=0.7,P(B)=P(C)=0.8
(1)P(B?C)=P(B)? P(c)=0.8×0.8=0.64 (6分)
(2)JA不能工作的概率為
JD不能工作的概率為 (8分)
(10分)
所以整條線路能正常工作的概率為0.9676 (12分)
答:9月份這段線路能正常工作的概率為0.9676。 (14分)
19.(本小題滿分12分)
解:(1)∵CF⊥平面ABC,∴AC是AF在平面ABC的射影
∵△ABC為邊長是的等邊三角形,M為AC中點
∴BM⊥AC,
∴AF⊥BM (3分)
(2)延長FE、CB交于一點N,則AN是平面AEF與平面ABC的交線
∵BE⊥平面ABC, CF⊥平面ABC
∴BE∥CF,∵CF=AB = 2BE,∴BE是△FCN的中位線B是CN的中點,
∴AN∥BM, AN⊥AC
∴AN⊥FA,∴∠FAC為所求二面角的平面角 (6分)
∵CF=AC, ∴∠FAC=45° (7分)
(3)V=VF-CAN-VE-ABN (9分)
=×a-
2a×a×sin1200×
(11分)
=-
=
(12分)
注:第(2)問利用指明S/,S也可;第(3)問可用分割的方法,相應(yīng)給分。
20.(本小題滿分12分)
解(1)∵f′(x)=-x2+4ax-3a2=-(x-3a)(x-a),由f′(x)>0得:a<x<3a
由f′(x)<0得,x<a或x>3a,
則函數(shù)f(x)的單調(diào)遞增區(qū)間為(a,3a),單調(diào)遞減區(qū)間為(-∞,a)和(3a,+∞)列表如下:
X
(-∞,a)
a
(a, 3a)
3a
(3a,+ ∞)
f′(x)
―
0
+
0
―
f(x)
ㄋ
-a3+b
ㄊ
b
ㄋ
∴函數(shù)f(x)的極大值為b,極小值為-a3+b (6分)
(2)上單調(diào)遞減,
因此
∵不等式|f′(x)|≤a恒成立,
即a的取值范圍是 (12分)
21.(本小題滿分14分)
(1)由,得
,
(2分)
,
(4分)
又成等差數(shù)列,
(5分)
即:
即:,解之得:
或
, (6分)
經(jīng)檢驗,是增根,∴
.
(7分)
(2)證明:
(9分)
時等號成立 (10分)
此時
即:。 (14分)
22.(本小題滿分14分)
解(1)由雙曲線C:知F(2,0), 第一、三象限的漸近線
:
設(shè)點P,∵FP⊥
,∴
,∴x=
,∴P
, A
,
,∴
=
(2)由得:
,
設(shè),
,M、N的中點為H
則,
,
,
,
即H,
則線段MN的垂直平分線為:,
將點B(0,-1),的坐標代入,化簡得:,
則由得:
,解之得
或
,
又,所以
,
故m的取值范圍是。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com