題目列表(包括答案和解析)
C.選修4—4:坐標(biāo)系與參數(shù)方程
(本小題滿分10分)
在極坐標(biāo)系中,圓的方程為,以極點為坐標(biāo)原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),判斷直線和圓的位置關(guān)系.
C.選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿分10分)
在平面直角坐標(biāo)系中,求過橢圓(為參數(shù))的右焦點且與直線(為參數(shù))平行的直線的普通方程。
C.(選修4—4:坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,圓的方程為,以極點為坐標(biāo)原點,極軸為軸的正
半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),求直線被截
得的弦的長度.
C.(坐標(biāo)系與參數(shù)方程選做題)已知極坐標(biāo)的極點在直角坐標(biāo)系的原點O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為(為參數(shù)),直線l的極坐標(biāo)方程為.點P在曲線C上,則點P到直線l的距離的最小值為 .
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知曲線的參數(shù)方程是(是參數(shù)),若以為極點,軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長度,建立極坐標(biāo)系,求曲線的極坐標(biāo)方程.
一、選擇題:本大題共12小題,每小題5分,共60分
1.D 2.B 3.C 4.D 5.B 6.C
7.A 8.D 9.B 10.B 11.C 12.A
二、填空題:本大題共6小題,共74分
13.5 14.3 15. 16.32
三、解答題:本大題共6小題,共74分
17.解:(I)由三角函數(shù)的定義可知
(II)又為正三角形,
18.解:(I)
第三批旅游人數(shù)為
現(xiàn)用分層抽樣的方法在所有游客中抽取50名游客,應(yīng)在第三批參加旅游的游客中抽取的人數(shù)為(人)
(II)設(shè)“第三批參加旅游的游客中到北京游的人數(shù)比到香港游的人數(shù)多”為事件A,第三批參加旅游的游客中到北京游的人數(shù)、到香港游的人數(shù)記為
由(I)知,且
則基本事件空間包含的基本事件有
(136,144)(137,143)(138,142)(139,141)(140,140)(141,139)(142,138)
(143,137)(144,136)(145,135)(146,134)(147,133) 共12個。
事件A包含的基本事件有
(141,139)(142,138)(143,137)(144,136)(145,135)(146,134)(147,133)共7個
答:第三批參加旅游的游客中到北京游的人數(shù)比到香港游的人數(shù)多的概率為
19.解:(I)取的中點,連結(jié)
在中,為的中點
四邊形為平行四邊形
(II)
側(cè)面底面,平面,
又是正三角形,為的中點,
(III)取的中點,連結(jié),是邊長為2的正三角形,
又側(cè)面底面
20.解(I)由已知得,
數(shù)列是首項,公差的等差數(shù)列
(II)由(I)知
21.解:(I)由題意知,
由橢圓定義知,動點滿足的曲線方程是:
(II)由方程組
的面積
不存在直線滿足題意
22.解法一:
(I)由已知
(II)
由此得時,單調(diào)遞減;時,單調(diào)遞增
當(dāng),即時,
當(dāng),即時,
(III)
在在是減函數(shù),
在上恒成立
即在上恒成立
在上恒成立
又當(dāng)且僅當(dāng)時等號成立。
解法二;(I),(II)同解法一
(III)
在是減函數(shù),
在上恒成立
即在上恒成立
不妨設(shè)
由于無解。
綜上所述,得出,即的取值范圍是
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com