23.(必做題 查看更多

 

題目列表(包括答案和解析)

選答題(本小題滿分10分)(請考生在第22、23、24三道題中任選一題做答,并用2B鉛筆在答題卡上把所選題目的題號涂黑。注意所做題號必須與所涂題目的題號一致,并在答題卡指定區(qū)域答題。如果多做,則按所做的第一題計分。)

 

22.選修4-1:幾何證明選講

       如圖,已知是⊙的切線,為切點,是⊙的割線,與⊙交于兩點,圓心的內(nèi)部,點的中點。

  

(1)證明四點共圓;

   (2)求的大小。

 

23.選修4—4:坐標系與參數(shù)方程[來源:ZXXK]

       已知直線經(jīng)過點,傾斜角。

   (1)寫出直線的參數(shù)方程;

   (2)設與曲線相交于兩點,求點兩點的距離之積。

24.選修4—5:不等式證明選講

       若不等式與不等式同解,而的解集為空集,求實數(shù)的取值范圍。

 

 

查看答案和解析>>

選答題(本小題滿分10分)(請考生在第22、23、24三道題中任選一題做答,并用2B鉛筆在答題卡上把所選題目的題號涂黑。注意所做題號必須與所涂題目的題號一致,并在答題卡指定區(qū)域答題。如果多做,則按所做的第一題計分。)
22.選修4-1:幾何證明選講
如圖,已知是⊙的切線,為切點,是⊙的割線,與⊙交于兩點,圓心的內(nèi)部,點的中點。
  
(1)證明四點共圓;
(2)求的大小。
23.選修4—4:坐標系與參數(shù)方程
已知直線經(jīng)過點,傾斜角
(1)寫出直線的參數(shù)方程;
(2)設與曲線相交于兩點,求點兩點的距離之積。
24.選修4—5:不等式證明選講
若不等式與不等式同解,而的解集為空集,求實數(shù)的取值范圍。

查看答案和解析>>

選答題(本小題滿分10分)(請考生在第22、23、24三道題中任選一題做答,并用2B鉛筆在答題卡上把所選題目的題號涂黑。注意所做題號必須與所涂題目的題號一致,并在答題卡指定區(qū)域答題。如果多做,則按所做的第一題計分。)
22.選修4-1:幾何證明選講
如圖,已知是⊙的切線,為切點,是⊙的割線,與⊙交于兩點,圓心的內(nèi)部,點的中點。
  
(1)證明四點共圓;
(2)求的大小。
23.選修4—4:坐標系與參數(shù)方程[來源:學科網(wǎng)ZXXK]
已知直線經(jīng)過點,傾斜角。
(1)寫出直線的參數(shù)方程;
(2)設與曲線相交于兩點,求點兩點的距離之積。
24.選修4—5:不等式證明選講
若不等式與不等式同解,而的解集為空集,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿10分)注意:第(3)小題平行班學生不必做,特保班學生必須做。對于函數(shù),若存在x0∈R,使成立,則稱x0的不動點。已知函數(shù)a≠0)。

(1)當時,求函數(shù)的不動點;

(2)若對任意實數(shù)b,函數(shù)恒有兩個相異的不動點,求a的取值范圍;

(3)(特保班做) 在(2)的條件下,若圖象上A、B兩點的橫坐標是函數(shù)的不動點,且A、B兩點關于點對稱,求的的最小值。

 

查看答案和解析>>

(本小題滿10分)注意:第(3)小題平行班學生不必做,特保班學生必須做。

對于函數(shù),若存在x0∈R,使成立,則稱x0的不動點。

已知函數(shù)a≠0)。

(1)當時,求函數(shù)的不動點;

(2)若對任意實數(shù)b,函數(shù)恒有兩個相異的不動點,求a的取值范圍;

(3)(特保班做) 在(2)的條件下,若圖象上A、B兩點的橫坐標是函數(shù)的不動點,且A、B兩點關于點對稱,求的的最小值。

查看答案和解析>>

一、填空題

1.;2.-1;3.48;4.;5.1;6.a(chǎn);7.;

 

8.;9.;10.4;11.160;12.;13.;14.

二、解答題

15.證明:(Ⅰ)

因為平面PBC與平面PAD的交線為

所以

(Ⅱ)在中,由題設可得

于是

在矩形中,.又,

所以平面   又

平面PBC與平面PAD所成二面角的一個平面角 

中  

所以平面PBC與平面PAD所成二面角的大小為

16.解:(Ⅰ)

          ……2分

由題意得,得

時,最小正整數(shù)的值為2,故.        ……6分

(Ⅱ)因  

  當且僅當,時,等號成立

,又因,則 ,即 ……10分

由①知:

,則  ,

,故函數(shù)的值域為.                   ……14分

 

17.解:(Ⅰ)6ec8aac122bd4f6e

6ec8aac122bd4f6e時,g(x)=f(x)-f(x-1)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

當x=1時,g(x)=g(1)也適合上式

6ec8aac122bd4f6e

6ec8aac122bd4f6e

等號當且僅當x=12-x即x=6時成立,即當x=6時,6ec8aac122bd4f6e(萬件)

∴6月份該商品的需求量最大,最大需求量為6ec8aac122bd4f6e萬件。

(Ⅱ)依題意,對一切6ec8aac122bd4f6e,有

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

答每個月至少投入6ec8aac122bd4f6e萬件可以保證每個月都足量供應。

 

18.解:(Ⅰ)  由(x-12)2+y2=144-a(a<144),可知圓心M的坐標為(12,0),

依題意,∠ABM=∠BAM=,kAB= , 設MA、MB的斜率k.

,  解得=2,=- .

∴所求BD方程為x+2y-12=0,AC方程為2x-y-24=0.

(Ⅱ) 設MB、MA的傾斜角分別為θ1,θ2,則tanθ1=2,tanθ2=-,

設圓半徑為r,則A(12+),B(12-,),

再設拋物線方程為y2=2px (p>0),由于A,B兩點在拋物線上,

∴ ∴ r=4,p=2.

得拋物線方程為y2=4x。

 

19.解:(Ⅰ)設數(shù)列的公差為,由

    , ,解得=3

    ∴

    ∵  ∴Sn==

(Ⅱ)  

(Ⅲ)由(2)知,

  ∴,

  ∵成等比數(shù)列

 ∴       即

時,7,=1,不合題意;

時,,=16,符合題意;

時,,無正整數(shù)解;

時,,無正整數(shù)解;

時,,無正整數(shù)解;

時,,無正整數(shù)解;

時, ,則,而,所以,此時不存在正整數(shù)m,n,且1<m<n,使得成等比數(shù)列。

綜上,存在正整數(shù)m=2,n=16,且1<m<n,使得成等比數(shù)列。

 

20.解:(Ⅰ)假設①,其中偶函數(shù),為奇函數(shù),則有,即②,

由①②解得,.

定義在R上,∴,都定義在R上.

.

是偶函數(shù),是奇函數(shù),

,

.  

,則,

平方得,∴

.                    …………6分

(Ⅱ)∵關于單調(diào)遞增,∴.

對于恒成立,

對于恒成立,

,則,

,∴,故上單調(diào)遞減,

,∴為m的取值范圍. …………10分

(Ⅲ)由(1)得,

無實根,即①無實根,    

方程①的判別式.

1°當方程①的判別式,即時,

方程①無實根.                            ……………12分

2°當方程①的判別式,即時,

方程①有兩個實根,

②,

只要方程②無實根,故其判別式,

即得③,且④,

,③恒成立,由④解得

∴③④同時成立得

綜上,m的取值范圍為.           ……………16分

 

 

 

 

 

 

 

三、附加題

21A.(1)∵DE2=EF?EC,∴DE : CE=EF: ED.

          ∵ÐDEF是公共角,

          ∴ΔDEF∽ΔCED.  ∴ÐEDF=ÐC.

          ∵CD∥AP,    ∴ÐC=Ð P.

          ∴ÐP=ÐEDF.

(2)∵ÐP=ÐEDF,    ÐDEF=ÐPEA,

     ∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF?EP=DE?EA.

     ∵弦AD、BC相交于點E,∴DE?EA=CE?EB.∴CE?EB=EF?EP.

21B.解(Ⅰ)由條件得矩陣,

它的特征值為,對應的特征向量為;

(Ⅱ),

橢圓的作用下的新曲線的方程為

21C.解:(Ⅰ)x2+y2-4x-4y+6=0;                    

(Ⅱ)x+y=4+2sin()  最大值6,最小值2 . 

21D.證明:

  

當且僅當時,等號成立.

22.解:設既會唱歌又會跳舞的有x人,則文娛隊中共有(7-x)人,那么只會一項的人數(shù)是(7-2 x)人.

 (I)∵

.即

∴x=2.           故文娛隊共有5人.

(II) ,

的概率分布列為

0

1

2

P

=1.

23.解:(Ⅰ);

(Ⅱ)

 

 

 


同步練習冊答案