(Ⅲ)是否存在正整數(shù)m,n,且1<m<n,使得成等比數(shù)列?若存在.求出m,n的值.若不存在.說(shuō)明理由. 20 查看更多

 

題目列表(包括答案和解析)

已知f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N+)

經(jīng)計(jì)算得f(2)=
3
2
,f(4)>2,f(8)
5
2
,f(16)>3,f(32)
7
2
,通過(guò)觀察,我們可以得到一個(gè)一般性的結(jié)論.
(1)試寫(xiě)出這個(gè)一般性的結(jié)論;
(2)請(qǐng)證明這個(gè)一般性的結(jié)論;
(3)對(duì)任一給定的正整數(shù)a,試問(wèn)是否存在正整數(shù)m,使得1+
1
2
+
1
3
+…+
1
m
>a
?若存在,請(qǐng)給出符合條件的正整數(shù)m的一個(gè)值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

等差數(shù)列{an}中a3=7,a1+a2+a3=12,記為{an}的前n項(xiàng)和,令bn=anan+1,數(shù)列的前n項(xiàng)和為Tn.(1)求an和Sn; (2)求證:Tn<;(3)是否存在正整數(shù)m , n ,且1<m<n ,使得T1 , Tm , Tn成等比數(shù)列?若存在,求出m ,n的值,若不存在,說(shuō)明理由.

查看答案和解析>>

已知f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N+)

經(jīng)計(jì)算得f(2)=
3
2
,f(4)>2,f(8)
5
2
,f(16)>3,f(32)
7
2
,通過(guò)觀察,我們可以得到一個(gè)一般性的結(jié)論.
(1)試寫(xiě)出這個(gè)一般性的結(jié)論;
(2)請(qǐng)證明這個(gè)一般性的結(jié)論;
(3)對(duì)任一給定的正整數(shù)a,試問(wèn)是否存在正整數(shù)m,使得1+
1
2
+
1
3
+…+
1
m
>a
?若存在,請(qǐng)給出符合條件的正整數(shù)m的一個(gè)值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知數(shù)列{an}的前n項(xiàng)和為Sn,設(shè)an是Sn與2的等差中項(xiàng),數(shù)列{bn}中,b1=1,bn+1=bn+2.

(1)求an,bn;

(2)若數(shù)列{bn}的前n項(xiàng)和為Bn,比較+…+與2的大;

(3)令Tn=+…+,是否存在正整數(shù)M,使得Tn<M對(duì)一切正整數(shù)n都成立?若存在,求出M的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知f(n)=1數(shù)學(xué)公式
經(jīng)計(jì)算得f(2)=數(shù)學(xué)公式,f(4)>2,f(8)數(shù)學(xué)公式,f(16)>3,f(32)數(shù)學(xué)公式,通過(guò)觀察,我們可以得到一個(gè)一般性的結(jié)論.
(1)試寫(xiě)出這個(gè)一般性的結(jié)論;
(2)請(qǐng)證明這個(gè)一般性的結(jié)論;
(3)對(duì)任一給定的正整數(shù)a,試問(wèn)是否存在正整數(shù)m,使得1數(shù)學(xué)公式?若存在,請(qǐng)給出符合條件的正整數(shù)m的一個(gè)值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、填空題

1.;2.-1;3.48;4.;5.1;6.a(chǎn);7.

 

8.;9.;10.4;11.160;12.;13.;14.

二、解答題

15.證明:(Ⅰ)

因?yàn)槠矫鍼BC與平面PAD的交線為

所以

(Ⅱ)在中,由題設(shè)可得

于是

在矩形中,.又,

所以平面   又

平面PBC與平面PAD所成二面角的一個(gè)平面角 

中  

所以平面PBC與平面PAD所成二面角的大小為

16.解:(Ⅰ)

          ……2分

由題意得,,得,

當(dāng)時(shí),最小正整數(shù)的值為2,故.        ……6分

(Ⅱ)因  

  當(dāng)且僅當(dāng),時(shí),等號(hào)成立

,又因,則 ,即 ……10分

由①知:

,則  ,

,故函數(shù)的值域?yàn)?sub>.                   ……14分

 

17.解:(Ⅰ)6ec8aac122bd4f6e

當(dāng)6ec8aac122bd4f6e時(shí),g(x)=f(x)-f(x-1)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

當(dāng)x=1時(shí),g(x)=g(1)也適合上式

6ec8aac122bd4f6e

6ec8aac122bd4f6e

等號(hào)當(dāng)且僅當(dāng)x=12-x即x=6時(shí)成立,即當(dāng)x=6時(shí),6ec8aac122bd4f6e(萬(wàn)件)

∴6月份該商品的需求量最大,最大需求量為6ec8aac122bd4f6e萬(wàn)件。

(Ⅱ)依題意,對(duì)一切6ec8aac122bd4f6e,有

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

答每個(gè)月至少投入6ec8aac122bd4f6e萬(wàn)件可以保證每個(gè)月都足量供應(yīng)。

 

18.解:(Ⅰ)  由(x-12)2+y2=144-a(a<144),可知圓心M的坐標(biāo)為(12,0),

依題意,∠ABM=∠BAM=,kAB= , 設(shè)MA、MB的斜率k.

,  解得=2,=- .

∴所求BD方程為x+2y-12=0,AC方程為2x-y-24=0.

(Ⅱ) 設(shè)MB、MA的傾斜角分別為θ1,θ2,則tanθ1=2,tanθ2=-,

設(shè)圓半徑為r,則A(12+),B(12-,),

再設(shè)拋物線方程為y2=2px (p>0),由于A,B兩點(diǎn)在拋物線上,

∴ ∴ r=4,p=2.

得拋物線方程為y2=4x。

 

19.解:(Ⅰ)設(shè)數(shù)列的公差為,由

    , ,解得,=3

    ∴

    ∵  ∴Sn==

(Ⅱ)  

(Ⅲ)由(2)知,

  ∴,

  ∵成等比數(shù)列

 ∴       即

當(dāng)時(shí),7,=1,不合題意;

當(dāng)時(shí),=16,符合題意;

當(dāng)時(shí),,無(wú)正整數(shù)解;

當(dāng)時(shí),,無(wú)正整數(shù)解;

當(dāng)時(shí),,無(wú)正整數(shù)解;

當(dāng)時(shí),無(wú)正整數(shù)解;

當(dāng)時(shí), ,則,而,所以,此時(shí)不存在正整數(shù)m,n,且1<m<n,使得成等比數(shù)列。

綜上,存在正整數(shù)m=2,n=16,且1<m<n,使得成等比數(shù)列。

 

20.解:(Ⅰ)假設(shè)①,其中偶函數(shù),為奇函數(shù),則有,即②,

由①②解得,.

定義在R上,∴,都定義在R上.

,.

是偶函數(shù),是奇函數(shù),

,

.  

,則,

平方得,∴,

.                    …………6分

(Ⅱ)∵關(guān)于單調(diào)遞增,∴.

對(duì)于恒成立,

對(duì)于恒成立,

,則,

,∴,故上單調(diào)遞減,

,∴為m的取值范圍. …………10分

(Ⅲ)由(1)得,

無(wú)實(shí)根,即①無(wú)實(shí)根,    

方程①的判別式.

1°當(dāng)方程①的判別式,即時(shí),

方程①無(wú)實(shí)根.                            ……………12分

2°當(dāng)方程①的判別式,即時(shí),

方程①有兩個(gè)實(shí)根,

②,

只要方程②無(wú)實(shí)根,故其判別式,

即得③,且④,

,③恒成立,由④解得,

∴③④同時(shí)成立得

綜上,m的取值范圍為.           ……………16分

 

 

 

 

 

 

 

三、附加題

21A.(1)∵DE2=EF?EC,∴DE : CE=EF: ED.

          ∵ÐDEF是公共角,

          ∴ΔDEF∽ΔCED.  ∴ÐEDF=ÐC.

          ∵CD∥AP,    ∴ÐC=Ð P.

          ∴ÐP=ÐEDF.

(2)∵ÐP=ÐEDF,    ÐDEF=ÐPEA,

     ∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF?EP=DE?EA.

     ∵弦AD、BC相交于點(diǎn)E,∴DE?EA=CE?EB.∴CE?EB=EF?EP.

21B.解(Ⅰ)由條件得矩陣,

它的特征值為,對(duì)應(yīng)的特征向量為;

(Ⅱ)

橢圓的作用下的新曲線的方程為

21C.解:(Ⅰ)x2+y2-4x-4y+6=0;                    

(Ⅱ)x+y=4+2sin()  最大值6,最小值2 . 

21D.證明:

  

當(dāng)且僅當(dāng)時(shí),等號(hào)成立.

22.解:設(shè)既會(huì)唱歌又會(huì)跳舞的有x人,則文娛隊(duì)中共有(7-x)人,那么只會(huì)一項(xiàng)的人數(shù)是(7-2 x)人.

 (I)∵,

.即

∴x=2.           故文娛隊(duì)共有5人.

(II) ,,

的概率分布列為

0

1

2

P

=1.

23.解:(Ⅰ);

(Ⅱ)

 

 

 


同步練習(xí)冊(cè)答案