題目列表(包括答案和解析)
|
1 1 |
2 |
π |
4 |
|
若方程x2+(m-2)x-m+5=0的兩個根都大于2,求實數(shù)m的取值范圍.
閱讀下面的解法,回答提出的問題.
解:第一步,令判別式Δ=(m-2)2-4(-m+5)≥0,
解得m≥4或m≤-4;
第二步,設兩根為x1,x2,由x1>2,x2>2得
,所以.
所以m<-2.
第三步,由得m≤-4.
第四步,由第三步得出結論.
當m∈(-∞,-4]時,此方程兩根均大于2.
但當取m=-6檢驗知,方程x2-8x+11=0兩根為x=4±,其中4-<2.
試問:產(chǎn)生錯誤的原因是什么?
在△ABC中,a、b、c分別是角A、B、C的對邊,cosB=.
⑴ 若cosA=-,求cosC的值; ⑵ 若AC=,BC=5,求△ABC的面積.
【解析】第一問中sinB==, sinA==
cosC=cos(180°-A-B)=-cos(A+B) =sinA.sinB-cosA·cosB
=×-(-)×=
第二問中,由=+-2AB×BC×cosB得 10=+25-8AB
解得AB=5或AB=3綜合得△ABC的面積為或
解:⑴ sinB==, sinA==,………………2分
∴cosC=cos(180°-A-B)=-cos(A+B) ……………………3分
=sinA.sinB-cosA·cosB ……………………4分
=×-(-)×= ……………………6分
⑵ 由=+-2AB×BC×cosB得 10=+25-8AB ………………7分
解得AB=5或AB=3, ……………………9分
若AB=5,則S△ABC=AB×BC×sinB=×5×5×= ………………10分
若AB=3,則S△ABC=AB×BC×sinB=×5×3×=……………………11分
綜合得△ABC的面積為或
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設,若對任意,,不等式 恒成立,求實數(shù)的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。
解: (I)的定義域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是 ........4分
(II)若對任意不等式恒成立,
問題等價于, .........5分
由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當b<1時,;
當時,;
當b>2時,; ............8分
問題等價于 ........11分
解得b<1 或 或 即,所以實數(shù)b的取值范圍是
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com