構(gòu)成滿足 (與橢圓焦半徑不同.橢圓焦半徑要帶符號計算.而雙曲線不帶符號) 查看更多

 

題目列表(包括答案和解析)

給出下列命題:
①若橢圓
x2
25
+
y2
16
=1
的左右焦點分別為F1、F2,動點P滿足|PF1|+|PF2|>6,則動點P不一定在該橢圓外部;
②以拋物線y2=2px(p>0)的焦點為圓心,以
p
2
為半徑的圓與該拋物線必有3個不同的公共點;
③雙曲線
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點;
④拋物線y2=4x上動點P到其焦點的距離的最小值≥1.
其中真命題的序號為
①③④
①③④
.(寫出所有真命題的序號)

查看答案和解析>>

給出下列命題:
①若橢圓的左右焦點分別為F1、F2,動點P滿足|PF1|+|PF2|>6,則動點P不一定在該橢圓外部;
②以拋物線y2=2px(p>0)的焦點為圓心,以為半徑的圓與該拋物線必有3個不同的公共點;
③雙曲線與橢圓有相同的焦點;
④拋物線y2=4x上動點P到其焦點的距離的最小值≥1.
其中真命題的序號為    .(寫出所有真命題的序號)

查看答案和解析>>

(2013•天津一模)設(shè)橢圓的中心在坐標原點,對稱軸是坐標軸,一個頂點為A(0,2),右焦點F到點B(
2
2
)
的距離為2.
(I)求橢圓的方程;
(Ⅱ)設(shè)經(jīng)過點(0,-3)的直線l與橢圓相交于不同兩點M,N滿足|
AM
|=|
AN
|
,試求直線l的方程.

查看答案和解析>>

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的長軸長為4,離心率為
1
2
,F(xiàn)1,F(xiàn)2分別為其左右焦點.一動圓過點F2,且與直線x=-1相切.
(Ⅰ) (ⅰ)求橢圓C1的方程;
(ⅱ)求動圓圓心軌跡C的方程;
(Ⅱ)在曲線C上有四個不同的點M,N,P,Q,滿足
MF2
NF2
共線,
PF2
QF2
共線,且
PF2
MF2
=0
,求四邊形PMQN面積的最小值.

查看答案和解析>>

已知橢圓C1的方程為
x2
4
+y2=1,雙曲線C2的左、右焦點分別為C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點.
(Ⅰ)求雙曲線C2的方程;
(Ⅱ)若直線l:y=kx+
2
與橢圓C1及雙曲線C2都恒有兩個不同的交點,且l與C2的兩個交點A和B滿足
OA
OB
<6(其中O為原點),求k的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案