題目列表(包括答案和解析)
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
定義變換:可把平面直角坐標系上的點變換到這一平面上的點.特別地,若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.
(1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程. 并求出當時,其兩個焦點、經(jīng)變換公式變換后得到的點和的坐標;
(2)當時,求(1)中的橢圓在變換下的所有不動點的坐標;
(3)試探究:中心為坐標原點、對稱軸為坐標軸的雙曲線在變換
:(,)下的不動點的存在情況和個數(shù).
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
定義變換:可把平面直角坐標系上的點變換到這一平面上的點.特別地,若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.
(1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程. 并求出當時,其兩個焦點、經(jīng)變換公式變換后得到的點和的坐標;
(2)當時,求(1)中的橢圓在變換下的所有不動點的坐標;
(3)試探究:中心為坐標原點、對稱軸為坐標軸的雙曲線在變換
:(,)下的不動點的存在情況和個數(shù).
(本題滿分18分)第(1)小題滿分4分,第(2)小題滿分8分,第(3)小題滿分6分。
定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”。如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比。已知橢圓。
若橢圓,判斷與是否相似?如果相似,求出與的相似比;如果不相似,請說明理由;
寫出與橢圓相似且短半軸長為的橢圓的方程;若在橢圓上存在兩點、關于直線對稱,求實數(shù)的取值范圍?
如圖:直線與兩個“相似橢圓”和分別交于點和點,證明:
(本題滿分18分)第(1)小題滿分4分,第(2)小題滿分8分,第(3)小題滿分6分。
定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”。如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比。已知橢圓。
若橢圓,判斷與是否相似?如果相似,求出與的相似比;如果不相似,請說明理由;
寫出與橢圓相似且短半軸長為的橢圓的方程;若在橢圓上存在兩點、關于直線對稱,求實數(shù)的取值范圍?
如圖:直線與兩個“相似橢圓”和分別交于點和點,證明:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com