題目列表(包括答案和解析)
(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標(biāo)原點到切線的距離為,若x=時,y=f(x)有極值.
(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m
(2)求y=f(x)在[-3,1]上的最大值和最小值.
(本小題滿分12分)
閱讀下面內(nèi)容,思考后做兩道小題。
在一節(jié)數(shù)學(xué)課上,老師給出一道題,讓同學(xué)們先解,題目是這樣的:
已知函數(shù)f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范圍。
題目給出后,同學(xué)們馬上投入緊張的解答中,結(jié)果很快出來了,大家解出的結(jié)果有很多個,下面是其中甲、乙兩個同學(xué)的解法:
甲同學(xué)的解法:由f(1)=k+b,f(-1)=-k+b得
①+②得:0≤2b≤4,即0≤b≤2 ③
② ×(-1)+①得:-1≤k-b≤1 ④
④+②得:0≤2k≤4 ⑤
③+⑤得:0≤2k+b≤6。
又∵f(2)=2k+b
∴0≤f(2)≤6,0≤Z≤6
乙同學(xué)的解法是:由f(1)=k+b,f(-1)=-k+b得
①+②得:0≤2b≤4,即:0≤b≤2 ③
①-②得:2≤2k≤2,即:1≤k≤1
∴k=1,
∵f(2)=2k+b=1+b
由③得:1≤f(2)≤3
∴:1≤Z≤3
(Ⅰ)如果課堂上老師讓你對甲、乙兩同學(xué)的解法給以評價,你如何評價?
(Ⅱ)請你利用線性規(guī)劃方面的知識,再寫出一種解法。
(本題12分)某種家電器每臺的銷售利潤與該電器無故障使用時間T(單位:年)有關(guān),若T≤1,則銷售利潤為0元,若1<T≤3,則銷售利潤為100元,若T>3,則銷售利潤為200元,設(shè)每臺該種電臺無故障使用時間T≤1,1<T≤3及T>3這三種情況發(fā)生的概率為為P1,P2,P3,又知P1,P2是方程25x2-15x+a=0的兩個根,且P2=P3,
(1)求P1,P2,P3的值;
(2)記表示銷售兩臺這種家用電器的銷售利潤總和,求的分布列;
(3)求銷售兩臺這種家用電器的銷售利潤總和的平均值。
已知函數(shù)
,曲線y=f(x)在x=1處的點的切線l不過第四象限且斜率為3,又坐標(biāo)原點到切線l的距離為,若時,y=f(x)有極值.(1)
求a,b,c的值;(按a,b,c順序填寫)(2)
求y=f(x)在[-3,1]上的最大值和最小值.(先填寫最大值,再填寫最小值)湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com