解析:方法一:顯然IB={1.2.4.6.7}. 查看更多

 

題目列表(包括答案和解析)

將A,B,C,D,E五種不同的文件放入編號依次為1,2,3,4,5,6,7的七個抽屜內(nèi),每個抽屜至多放一種文件,若文件A,B必須放入相鄰的抽屜內(nèi),文件C,D也必須放在相鄰的抽屜內(nèi),則文件放入抽屜內(nèi)的滿足條件的所有不同的方法有  (    )

 A.192       B.144       C.288      D.240      [來源:]

 

查看答案和解析>>

將A,B,C,D,E五種不同的文件放入編號依次為1,2,3,4,5,6,7的七個抽屜內(nèi),每個抽屜至多放一種文件,若文件A,B必須放入相鄰的抽屜內(nèi),文件C,D也必須放在相鄰的抽屜內(nèi),則文件放入抽屜內(nèi)的滿足條件的所有不同的方法有  (   

A.288          B.144           C.192            D.240     

 

查看答案和解析>>

將A,B,C,D,E五種不同的文件放入編號依次為1,2,3,4,5,6,7的七個抽屜內(nèi),每個抽屜至多放一種文件,若文件A,B必須放入相鄰的抽屜內(nèi),文件C,D也必須放在相鄰的抽屜內(nèi),則文件放入抽屜內(nèi)的滿足條件的所有不同的方法有  (   

 A.192       B.144       C.288      D.240 

 

查看答案和解析>>

(2005•金山區(qū)一模)對于集合N={1,2,3,…,n}的每一個非空子集,定義一個“交替和”如下:按照遞減的次序重新排列該子集,然后從最大數(shù)開始交替地減、加后繼的數(shù).例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和為5.當集合N中的n=2時,集合N={1,2}的所有非空子集為{1},{2},{1,2},則它的“交替和”的總和S2=1+2+(2-1)=4,請你嘗試對n=3、n=4的情況,計算它的“交替和”的總和S3、S4,并根據(jù)其結(jié)果猜測集合N={1,2,3,…,n}的每一個非空子集的“交替和”的總和Sn=
n•2n-1
n•2n-1

查看答案和解析>>

(2006•豐臺區(qū)一模)等比數(shù)列{bn}:1,2,4,…,其前n項和為Sn,n=1,2,3,…,則
lim
n→∞
bn
Sn
=
1
2
1
2

查看答案和解析>>


同步練習冊答案