10.一個正方體.它的表面涂滿了紅色.在它的每個面上切兩刀.可得27個小立方塊.從中任取2個.其中恰有1個一面涂有紅色.1個兩面涂有紅色的概率為 查看更多

 

題目列表(包括答案和解析)

一個正方體,它的表面涂滿了紅色,把它切割成27個完全相等的小正方體,從中任取2個,其中1個恰有一面涂有紅色,另1個恰有兩面涂有紅色的概率為
 

查看答案和解析>>

一個正方體,它的表面涂滿了紅色,在它的相鄰三個面上各切兩刀,可得27個小立方

塊,從中任取2個,其中恰有1個一面涂有紅色,另一個兩面涂有紅色的概率為___________.

查看答案和解析>>

一個正方體,它的表面涂滿了紅色,在它的每個面上切兩刀,可得27個小立方塊,從中任取2個,其中恰有1個一面涂有紅色,1個兩面涂有紅色的概率為(    )

A.                 B.              C.            D.

查看答案和解析>>

一個正方體,它的表面涂滿了紅色.在它的每個面上切三刀,可得64個小立方塊,從中任取2個,其中恰有1個一面涂有紅色,1個兩面涂有紅色的概率為(    )

A.             B.                 C.                  D.

查看答案和解析>>

一個正方體,它的表面涂滿了紅色,把它切割成27個完全相等的小立方體,從中

任取2個,其中1個恰有一面涂有紅色,另1個恰有兩面涂有紅色的概率為    (    )

 

A.                         B.                  C.                    D.

 

查看答案和解析>>

一、選擇題:

ADBAA    BCCDC

二、填空題:

11. ;        12. ;      13

14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

三、解答題:

16.解:(Ⅰ)

                                                                …………5分

成等比數(shù)列,知不是最大邊

                                                    …………6分

(Ⅱ)由余弦定理

ac=2                                                                                                        …………11分

=                                                                          …………12分

17.解:(Ⅰ)第一天通過檢查的概率為,       ………………………2分

第二天通過檢查的概率為,                  …………………………4分

由相互獨立事件得兩天全部通過檢查的概率為.        ………………6分

(Ⅱ)第一天通過而第二天不通過檢查的概率為,    …………8分

第二天通過而第一天不通過檢查的概率為,      ………………10分

由互斥事件得恰有一天通過檢查的概率為.     ……………………12分

 

18.解:方法一

(Ⅰ)取的中點,連結(jié),由,又,故,所以即為二面角的平面角.

在△中,,,

由余弦定理有

所以二面角的大小是.                              (6分)

(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

.                              …(12分)

 

19.解:(Ⅰ)設

則   ……①

     ……②

∴②-①得  2d2=0,∴d=p=0

                                            …………6分

(Ⅱ)當an=n時,恒等式為[S(1,n)]2=S(3,n)

證明:

相減得:

相減得:

                                         ………………………………13分

20.解:(Ⅰ)∵,∴,

又∵,∴,

,

∴橢圓的標準方程為.                                      ………(3分)

的斜率為0時,顯然=0,滿足題意,

的斜率不為0時,設方程為,

代入橢圓方程整理得:

,,

          ,

,從而

綜合可知:對于任意的割線,恒有.                ………(8分)

(Ⅱ),

即:

當且僅當,即(此時適合于的條件)取到等號.

∴三角形△ABF面積的最大值是.                 ………………………………(13分)

 

21.解:(Ⅰ)              ……………………………………………4分

(Ⅱ)或者……………………………………………8分

(Ⅲ)略                                        ……………………………………13分

 

 

 

雅禮中學08屆高三第八次質(zhì)檢數(shù)學(文科)試題參考答案

 

一、選擇題:

ADBAA    BCCDC

 

二、填空題:

11. ;        12. ;      13

14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

 

三、解答題:

 

16.解:(Ⅰ)

                                                                …………5分

成等比數(shù)列,知不是最大邊

                                                    …………6分

(Ⅱ)由余弦定理

ac=2                                                                                                        …………11分

=                                                                          …………12分

 

17.解:(Ⅰ)第一天通過檢查的概率為,       ………………………2分

第二天通過檢查的概率為,                  …………………………4分

由相互獨立事件得兩天全部通過檢查的概率為.        ………………6分

(Ⅱ)第一天通過而第二天不通過檢查的概率為,    …………8分

第二天通過而第一天不通過檢查的概率為,      ………………10分

由互斥事件得恰有一天通過檢查的概率為.     ……………………12分

 

 

 

 

 

18.解:方法一

(Ⅰ)取的中點,連結(jié),由,又,故,所以即為二面角的平面角.

在△中,,,

由余弦定理有

,

 

所以二面角的大小是.                              (6分)

(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

.                              …(12分)

 

19.解:(Ⅰ)設

則   ……①

     ……②

∴②-①得  2d2=0,∴d=p=0

                                            …………6分

(Ⅱ)當an=n時,恒等式為[S(1,n)]2=S(3,n)

證明:

相減得:

相減得:

                                         ………………………………13分

 

20.解:(Ⅰ)∵,∴,

又∵,∴,

∴橢圓的標準方程為.                                      ………(3分)

的斜率為0時,顯然=0,滿足題意,

的斜率不為0時,設方程為,

代入橢圓方程整理得:

,,

          ,

,從而

綜合可知:對于任意的割線,恒有.                ………(8分)

(Ⅱ),

即:,

當且僅當,即(此時適合于的條件)取到等號.

∴三角形△ABF面積的最大值是.                 ………………………………(13分)

 

21.解:(Ⅰ)              ……………………………………………4分

(Ⅱ)或者……………………………………………8分

(Ⅲ)略                                        ……………………………………13分


同步練習冊答案