C./3 D./3 查看更多

 

題目列表(包括答案和解析)

11、3名醫(yī)生和6名護(hù)士被分配到3所學(xué)校為學(xué)生體檢,每校分配1名醫(yī)生和2名護(hù)士.不同的分配方法共有( 。

查看答案和解析>>

3名工作人員安排在正月初一至初五的5天值班,每天有且只有1人值班,每人至多值班2天,則不同的安排方法共有(  )
A、30種B、60種C、90種D、180種

查看答案和解析>>

α=
π
3
”是“cosα=
1
2
”的( 。
A、必要不充分條件
B、充分不必要條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

“α=
π
3
是“sinα=
3
2
”的( 。

查看答案和解析>>

“-3<m<5”是“方程
x2
5-m
+
y2
m+3
=1表示橢圓”的( 。

查看答案和解析>>

一.選擇題

1.B    2.B  3. A   4.A   5.C   6. D  7.B   8.D   9.B  10.A  11.C   12.C

二.填空題

13.(1, )∪( ,2)       14.      15.      16. ②③④

三.解答題

17.解:(1)兩學(xué)生成績(jī)績(jī)的莖葉圖如圖所示……………4分    

(2)將甲、乙兩學(xué)生的成績(jī)從小到大排列為:

甲: 512  522  528  534  536  538  541  549   554  556   

乙:515  521  527  531  532  536   543  548   558   559   

從以上排列可知甲學(xué)生成績(jī)的中位數(shù)為……6分  

 乙學(xué)生成績(jī)的中位數(shù)為       …………8分

甲學(xué)生成績(jī)的平均數(shù)為:

……………10分   

乙學(xué)生成績(jī)的平均數(shù)為:

……………12分     

18.解:(1)∵

 ∴,

 ∴,∴ ∈(0,π)  ∴ ……4分

(2)∵,即                    ①   …………6分

 又,即    ②   …………8分

 由①②可得,∴     ………………………………………10分

 又,     ……………………………………12分

高三數(shù)學(xué)試題答案(文科)(共4頁(yè))第1頁(yè)

19.(I)設(shè)的中點(diǎn),連結(jié),則四邊形為正方形,……………2分

.故,,,即

………………………4分

平面,…………………………6分

(II)證明:DC的中點(diǎn)即為E點(diǎn),    ………………………………………………8分

連D1E,BE   ∴四邊形ABED是平行四邊形,

∴ADBE,又ADA1D1    A1D1    ∴四邊形A1D1EB是平行四邊形  D1E//A1B ,

∵D1E平面A1BD   ∴D1E//平面A1BD!12分

20.解:(1)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則

得a=3 ,  b=-2, 所以  f(x)=3x2-2x.  ……………………………………3分

又因?yàn)辄c(diǎn)均在函數(shù)的圖像上,所以=3n2-2n.

當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-=6n-5.

當(dāng)n=1時(shí),a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()………6分

(2)由(1)得知,……8分

故Tn(1-)………10分

因此,要使(1-)<)成立的m,必須且僅須滿足

,即m≥10,所以滿足要求的最小正整數(shù)m為10.  ………………………12分

    <menu id="qsis7"><source id="qsis7"></source></menu>

    • <nobr id="qsis7"><strong id="qsis7"><acronym id="qsis7"></acronym></strong></nobr>

              3x2+x-8<0,

              3x2-x-2<0,

               

              由-1≤a≤1的一切a的值,都有g(shù)(x)<0              -<x<1 …………6分

              高三數(shù)學(xué)試題答案(文科)(共4頁(yè))第2頁(yè)

              (2)       a=時(shí),, 函數(shù)y=f(x)的圖像與直線y=3只有一個(gè)公共點(diǎn),

              即函數(shù)F(x)= 的圖像與x軸只有一個(gè)公共點(diǎn)!8分

              知,

              若m=0,則 F(x)=0顯然只有一個(gè)根;

              若m≠0,則F(x)在x=-點(diǎn)取得極大值,在x=點(diǎn)取得極小值.

              因此必須滿足F(-)<0或F()>0,

              -<m<0或0<m<

              綜上可得 -<m <.                                ………………13分

              22.解:(1)設(shè)橢圓方程為,則.

              ∴橢圓方程為                   ……………………4分

              (2)∵直線l平行于OM,且在y軸上的截距為m,     又KOM=,

              ,聯(lián)立方程有

              ,    ∵直線l與橢圓交于A.B兩個(gè)不同點(diǎn),

                      …………8分

              (3)設(shè)直線MA,MB的斜率分別為k1,k2,只需證明k1+k2=0即可

              設(shè),

                 由

               

              高三數(shù)學(xué)試題答案(文科)(共4頁(yè))第3頁(yè)

              故直線MA,MB與x軸始終圍成一個(gè)等腰三角形. ……………………13分

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

              高三數(shù)學(xué)試題答案(文科)(共4頁(yè))第4頁(yè)

               


              同步練習(xí)冊(cè)答案