16.給出下列四個結(jié)論: 查看更多

 

題目列表(包括答案和解析)

給出下列四個結(jié)論:
①在△ABC中,∠A>∠B是sinA>sinB的充要條件;
②某企業(yè)有職工150人,其中高級職稱15人,中級職稱45人,一般職員90人,若用分層抽樣的方法抽出一個容量為30的樣本,則一般職員應抽出20人;
③如果函數(shù)f(x)對任意的x∈R都滿足f(x)=-f(2+x),則函數(shù)f(x)是周期函數(shù);
④已知點(
π
4
,0)和直線x=
π
2
分別是函數(shù)y=sin(ωx+φ)(ω>0)圖象的一個對稱中心和一條對稱軸,則ω的最小值為2;其中正確結(jié)論的序號是
 
.(填上所有正確結(jié)論的序號).

查看答案和解析>>

15、給出下列四個結(jié)論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③函數(shù)f(x)=x-sinx(x∈R)有3個零點;
④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時,f′(x)>g′(x).
其中正確結(jié)論的序號是
①④
(填上所有正確結(jié)論的序號)

查看答案和解析>>

給出下列四個結(jié)論:①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;②函數(shù)y=k3x(k>0)(k為常數(shù))的圖象可由函數(shù)y=3x的圖象經(jīng)過平移得到;③函數(shù)y=
1
2
+
1
2x-1
(x≠0)是奇函數(shù)且函數(shù)y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函數(shù);④函數(shù)y=cos|x|是周期函數(shù).其中正確結(jié)論的序號是
 
.(填寫你認為正確的所有結(jié)論序號)

查看答案和解析>>

給出下列四個結(jié)論:
①“若am2<bm2,則a<b”的逆命題為真;
②命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
③若a>0,b>0,A為a,b的等差中項,正數(shù)G為a,b的等比中項,則ab≥AG
④已知函數(shù)f(x)=log2x+logx2+1,x∈(0,1),則f(x)的最大值為-1.
其中正確結(jié)論的序號是
 

查看答案和解析>>

7、給出下列四個結(jié)論:
①命題“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
②給出四個函數(shù)y=x-1,y=x,y=x2,y=x3,則在R上是增函數(shù)的函數(shù)有3個;
③已知a,b∈R,則“等式|a+b|=|a|+|b|成立”的充要條件是“ab≥0”;
④若復數(shù)z=(m2+2m-3)+(m-1)i是純虛數(shù),則實數(shù)m的值為-3或1.
其中正確的個數(shù)是( 。

查看答案和解析>>

一、選擇題:

1.D  2.A  3  B  4.D 5.A 6.D 7.B 8.C   9.A  10.B  11.A  12.B

二、填空題:

13.12           14.6ec8aac122bd4f6e    15   3           16.,①②③④   

三、解答題:

17.解:法(1):①∵6ec8aac122bd4f6e=(1+cosB,sinB)與6ec8aac122bd4f6e=(0,1)所成的角為6ec8aac122bd4f6e

6ec8aac122bd4f6e與向量6ec8aac122bd4f6e=(1,0)所成的角為6ec8aac122bd4f6e                                                    

6ec8aac122bd4f6e,即6ec8aac122bd4f6e                                                   (2分)

而B∈(0,π),∴6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,∴B=6ec8aac122bd4f6e。                             (4分)

②令AB=c,BC=a,AC=b

∵B=6ec8aac122bd4f6e,∴b2=a2+c2-2accosB=a2+c2-ac=6ec8aac122bd4f6e,∵a,c>0。             (6分)

∴a2+c26ec8aac122bd4f6e,ac≤6ec8aac122bd4f6e (當且僅當a=c時等號成立)

∴12=a2+c2-ac≥6ec8aac122bd4f6e6ec8aac122bd4f6e                                               (8分)

∴(a+c)2≤48,∴a+c≤6ec8aac122bd4f6e,∴a+b+c≤6ec8aac122bd4f6e+6ec8aac122bd4f6e=6ec8aac122bd4f6e(當且僅當a=c時取等號)

故ΔABC的周長的最大值為6ec8aac122bd4f6e。                                                           (10分)

法2:(1)cos<6ec8aac122bd4f6e,6ec8aac122bd4f6e>=cos6ec8aac122bd4f6e

6ec8aac122bd4f6e,                                                                                   (2分)

即2cos2B+cosB-1=0,∴cosB=6ec8aac122bd4f6e或cosB=-1(舍),而B∈(0,π),∴B=6ec8aac122bd4f6e (4分)

(2)令AB=c,BC=a,AC=b,ΔABC的周長為6ec8aac122bd4f6e,則6ec8aac122bd4f6e=a+c+6ec8aac122bd4f6e

而a=b?6ec8aac122bd4f6e,c=b?6ec8aac122bd4f6e                                      (2分)

6ec8aac122bd4f6e=6ec8aac122bd4f6e=6ec8aac122bd4f6e

=6ec8aac122bd4f6e                                (8分)

∵A∈(0,6ec8aac122bd4f6e),∴A-6ec8aac122bd4f6e,

當且僅當A=6ec8aac122bd4f6e時,6ec8aac122bd4f6e。                                         (10分)

 18.解法一:(1)∵PA⊥底面ABCD,BC6ec8aac122bd4f6e平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC

(2)∵AB∥CD,∠BAD=120°,∴∠ADC=60°,又AD=CD=1

∴ΔADC為等邊三角形,且AC=1,取AC的中點O,則DO⊥AC,又PA⊥底面ABCD,

∴PA⊥DO,∴DO⊥平面PAC,過O作OH⊥PC,垂足為H,連DH

由三垂成定理知DH⊥PC,∴∠DHO為二面角D-PC-A的平面角

由OH=6ec8aac122bd4f6e,DO=6ec8aac122bd4f6e,∴tan∠DHO=6ec8aac122bd4f6e=2

∴二面角D-PC-A的大小的正切值為2。

6ec8aac122bd4f6e(3)設點B到平面PCD的距離為d,又AB∥平面PCD

∴VA-PCD=VP-ACD,即6ec8aac122bd4f6e

6ec8aac122bd4f6e  即點B到平面PCD的距離為6ec8aac122bd4f6e。

19.解:(1)第一和第三次取球?qū)Φ谒拇螣o影響,計第四次摸紅球為事件A

①第二次摸紅球,則第四次摸球時袋中有4紅球概率為

6ec8aac122bd4f6e                                                                            (2分)

②第二次摸白球,則第四次摸球時袋中有5紅2白,摸紅球概率為

6ec8aac122bd4f6e                                                                           (3分)

∴P(A)=6ec8aac122bd4f6e,即第四次恰好摸到紅球的概率為6ec8aac122bd4f6e。(6分)(注:無文字說明扣一分)

(2)由題設可知ξ的所有可能取值為:ξ=0,1,2,3。P(ξ=0)=6ec8aac122bd4f6e;

P(ξ=1)=6ec8aac122bd4f6e;P(ξ=2)=6ec8aac122bd4f6e;

P(ξ=3)=6ec8aac122bd4f6e。故隨機變量ξ的分布列為:

ξ

0

1

2

6ec8aac122bd4f6e3

P

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

∴Eξ=6ec8aac122bd4f6e(個),故Eξ=6ec8aac122bd4f6e(個)                                          (1

20.解:(1)6ec8aac122bd4f6e,6ec8aac122bd4f6e

故數(shù)列6ec8aac122bd4f6e是首項為2,公比為2的等比數(shù)列。

6ec8aac122bd4f6e6ec8aac122bd4f6e…………………………………………4分

(2)6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

②―①得6ec8aac122bd4f6e,即6ec8aac122bd4f6e

6ec8aac122bd4f6e

④―③得6ec8aac122bd4f6e,即6ec8aac122bd4f6e

所以數(shù)列6ec8aac122bd4f6e是等差數(shù)列……………………9分

(3)6ec8aac122bd4f6e………………………………11分

6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e

…………13分

21.解:(1)設6ec8aac122bd4f6e6ec8aac122bd4f6e.

整理得AB:bx-ay-ab=0與原點距離6ec8aac122bd4f6e,又6ec8aac122bd4f6e,

聯(lián)立上式解得b=1,∴c=2,6ec8aac122bd4f6e.∴雙曲線方程為6ec8aac122bd4f6e.

(2)設C(x1,y1),D(x2,y2)設CD中點M(x0,y0),

6ec8aac122bd4f6e,∴|AC|=|AD|,∴AM⊥CD.

聯(lián)立直線6ec8aac122bd4f6e與雙曲線的方程得6ec8aac122bd4f6e,整理得(1-3k2)x2-6kmx-3m2-3=0,且6ec8aac122bd4f6e.

6ec8aac122bd4f6e ,    6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e,∴AM⊥CD.

6ec8aac122bd4f6e,整理得6ec8aac122bd4f6e,

6ec8aac122bd4f6e且k2>0,,代入6ec8aac122bd4f6e中得6ec8aac122bd4f6e.

6ec8aac122bd4f6e.

22.解:(1)∵6ec8aac122bd4f6e(x)=3ax2+sinθx-2

由題設可知:6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e∴sinθ=1。(2分)

從而a=6ec8aac122bd4f6e,∴f(x)=6ec8aac122bd4f6e,而又由f(1)=6ec8aac122bd4f6e得,c=6ec8aac122bd4f6e

∴f(x)=6ec8aac122bd4f6e即為所求。                                                     (4分)

(2)6ec8aac122bd4f6e(x)=x2+x-2=(x+2)(x-1)易知f(x)在(-∞,-2)及(1,+∞)上均為增函數(shù),在(-2,1)上為減函數(shù)。

(i)當m>1時,f(x)在[m,m+3]上遞增。故f(x)max=f(m+3),f(x)min=f(m)

由f(m+3)-f(m)=6ec8aac122bd4f6e(m+3)3+6ec8aac122bd4f6e(m+3)2-2(m+3)-6ec8aac122bd4f6e=3m2+12m+6ec8aac122bd4f6e得-5≤m≤1。這與條件矛盾故舍。                                                                        (6分)

(ii)當0≤m≤1時,f(x)在[m,1]上遞減,在[1,m+3]上遞增。

∴f(x)min=f(1),f(x)max={f(m),f(m+3)}max

又f(m+3)-f(m)=3m2+12m+6ec8aac122bd4f6e=3(m+2)2-6ec8aac122bd4f6e>0(0≤m≤1),∴f(x)max=f(m+3)

∴|f(x1)-f(x2)| ≤f(x)max-f(x)min=f(m+3)-f(1) ≤f(4)-f(1)=6ec8aac122bd4f6e恒成立

故當0≤m≤1原式恒成立。                                                                        (8分)

綜上:存在m且m∈[0,1]合乎題意。                                                     (9分)

(3)∵a1∈(0,16ec8aac122bd4f6e,∴a26ec8aac122bd4f6e,故a2>2

假設n=k(k≥2,k∈N*)時,ak>2。則ak+1=f(ak)>f(2)=8>2

故對于一切n(n≥2,n∈N*)均有an>2成立。                                        (11分)

令g(x)=6ec8aac122bd4f6e

6ec8aac122bd4f6e=6ec8aac122bd4f6e

當x∈(0,2)時6ec8aac122bd4f6e(x)<0,x∈(2,+∞)時,6ec8aac122bd4f6e(x)>0,

∴g(x)在x∈[2,+∞6ec8aac122bd4f6e時為增函數(shù)。

而g(2)=8-8ln2>0,即當x∈[2,+∞6ec8aac122bd4f6e時,g(x)≥g(2)>0恒成立。

∴g(an)>0,(n≥2)也恒成立。即:an+1>8lnan(n≥2)恒成立。

而當n=1時,a2=8,而8lna1≤0,∴a2>8lna1顯然成立。

綜上:對一切n∈N*均有an+1>8lnan成立。                                 

 

 

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習冊答案