題目列表(包括答案和解析)
在等差數(shù)列{an}中,a1=3,其前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設(shè)數(shù)列{cn}滿足,求{cn}的前n項和Tn.
【解析】本試題主要是考查了等比數(shù)列的通項公式和求和的運用。第一問中,利用等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項公式故an=3+3(n-1)=3n, bn=3 n-1. 第二問中,,由第一問中知道,然后利用裂項求和得到Tn.
解: (Ⅰ) 設(shè):{an}的公差為d,
因為解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因為……………8分
(本題滿分12分)
數(shù)列{an}是等差數(shù)列,,,,其中,數(shù)列{an}前n項和存在最小值。
(1)求通項公式an
(2)若,求數(shù)列的前n項和
(本題滿分12分)
數(shù)列{an}是等差數(shù)列,。
(1)求通項公式an
(2)若,求數(shù)列的前n項和Sn
(本題滿分12分)
已知{an}是一個等差數(shù)列,且a2=1,a5=-5.
(1)求數(shù)列{an}的通項an;
(2)求{an}前n項和Sn的最大值.
((本題滿分12分)等差數(shù)列{an}的各項均為正數(shù),a1=3,前n項和為Sn,{bn}為等比數(shù)列, b1=1,且b2S2=64,b3S3=960.
(1)求an與bn;
(2)求++…+的值;
(3)記,記數(shù)列為,求.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com