(Ⅰ)若面積等于6.求過(guò)點(diǎn)的拋物線的方程, 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)B(0,t),點(diǎn)C(0,t-4)(其中0<t<4),直線PB、PC都是圓M:(x-1)2+y2=1的切線.
(Ⅰ)若△PBC面積等于6,求過(guò)點(diǎn)P的拋物線y2=2px(p>0)的方程;
(Ⅱ)若點(diǎn)P在y軸右邊,求△PBC面積的最小值.

查看答案和解析>>

(2009•臺(tái)州一模)已知點(diǎn)B(0,t),點(diǎn)C(0,t-4)(其中0<t<4),直線PB、PC都是圓M:(x-1)2+y2=1的切線.
(Ⅰ)若△PBC面積等于6,求過(guò)點(diǎn)P的拋物線y2=2px(p>0)的方程;
(Ⅱ)若點(diǎn)P在y軸右邊,求△PBC面積的最小值.

查看答案和解析>>

1-10.CDBBA   CACBD

11. 12. ①③④   13.-2或1  14. 、  15.2  16.  17..

18.

解:(1)由已知            7分

(2)由                                                                   10分

由余弦定理得                          14分

 

19.(1)證明:∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC,                                  3分

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC.                             5分

(2)解:過(guò)C作CE⊥AB于E,連接PE,

∵PA⊥底面ABCD,∴CE⊥面PAB,

∴直線PC與平面PAB所成的角為,                                                    10分

∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,

中求得CE=,∴.                                                  14分

 

20.解:(1)由①,得②,

②-①得:.                              4分

(2)由求得.          7分

,   11分

.                                                                 14分

 

21.解:

(1)由得c=1                                                                                     1分

,                                                         4分

<form id="bzl6k"><sup id="bzl6k"></sup></form>
  • <object id="bzl6k"></object>
      <menu id="bzl6k"><sup id="bzl6k"><strong id="bzl6k"></strong></sup></menu>
    • <kbd id="bzl6k"></kbd><object id="bzl6k"><thead id="bzl6k"></thead></object>

      市一次模文數(shù)參答―1(共2頁(yè))

                                                                                              5分

      (2),時(shí)取得極值.由,.                                                                                          8分

      ,,∴當(dāng)時(shí),

      上遞減.                                                                                       12分

      ∴函數(shù)的零點(diǎn)有且僅有1個(gè)     15分

       

      22.解:(1) 設(shè),由已知,

      ,                                        2分

      設(shè)直線PB與圓M切于點(diǎn)A,

                                                       6分

      (2) 點(diǎn) B(0,t),點(diǎn),                                                                  7分

      進(jìn)一步可得兩條切線方程為:

      ,                                   9分

      ,,

      ,,                                          13分

      ,又時(shí),,

      面積的最小值為                                                                            15分

       

       


      同步練習(xí)冊(cè)答案