(A)4 (B) (C) (D) 查看更多

 

題目列表(包括答案和解析)

的值是

(A)2     (B)    (C)4   (D)

查看答案和解析>>

(A)(不等式選做題)
若關(guān)于x的不等式|a|≥|x+1|+|x-2|存在實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)

(B)(幾何證明選做題)
如圖,A,E是半圓周上的兩個三等分點(diǎn),直徑BC=4,AD⊥BC,垂足為D,BE與AD相交于點(diǎn)F,則AF的長為
2
3
3
2
3
3

(C)(坐標(biāo)系與參數(shù)方程選做題) 
在已知極坐標(biāo)系中,已知圓ρ=2cosθ與直線 3ρcosθ+4ρsinθ+a=0相切,則實(shí)數(shù)a=
2或-8
2或-8

查看答案和解析>>

已知

(A)6              (B)5              (C)4              (D)2

 

查看答案和解析>>

已知,則的最小值為        (  )

(A)4          (B)      (C)2          (D)

 

查看答案和解析>>

(A題)已知點(diǎn)P是圓x2+y2=4上一動點(diǎn),直線l是圓在P點(diǎn)處的切線,動拋物線以直線l為準(zhǔn)線且恒經(jīng)過定點(diǎn)A(-1,0)和B(1,0),則拋物線焦點(diǎn)F的軌跡為


  1. A.
  2. B.
    橢圓
  3. C.
    雙曲線
  4. D.
    拋物線

查看答案和解析>>

1-10.CDBBA   CACBD

11. 12. ①③④   13.-2或1  14. 、  15.2  16.  17..

18.

解:(1)由已知            7分

(2)由                                                                   10分

由余弦定理得                          14分

 

19.(1)證明:∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC,                                  3分

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC.                             5分

(2)解:過C作CE⊥AB于E,連接PE,

∵PA⊥底面ABCD,∴CE⊥面PAB,

∴直線PC與平面PAB所成的角為,                                                    10分

∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,

中求得CE=,∴.                                                  14分

 

20.解:(1)由①,得②,

②-①得:.                              4分

(2)由求得.          7分

,   11分

.                                                                 14分

 

21.解:

(1)由得c=1                                                                                     1分

,                                                         4分

<progress id="yrdk6"></progress><option id="yrdk6"><sup id="yrdk6"></sup></option>

      市一次模文數(shù)參答―1(共2頁)

                                                                                              5分

      (2),時取得極值.由,.                                                                                          8分

      ,,∴當(dāng)時,,

      上遞減.                                                                                       12分

      ∴函數(shù)的零點(diǎn)有且僅有1個     15分

       

      22.解:(1) 設(shè),由已知,

      ,                                        2分

      設(shè)直線PB與圓M切于點(diǎn)A,

      ,

                                                       6分

      (2) 點(diǎn) B(0,t),點(diǎn),                                                                  7分

      進(jìn)一步可得兩條切線方程為:

      ,                                   9分

      ,

      ,                                          13分

      ,又時,

      面積的最小值為                                                                            15分

       

       


      同步練習(xí)冊答案