②面積為10 查看更多

 

題目列表(包括答案和解析)

   ΔABC面積為10,內(nèi)角A,B,C所對的邊分別為,cosA=

 (1)求

  (2).若,求的值

查看答案和解析>>

一面積為10三角形,有一內(nèi)角為,夾這個角的兩邊比為5∶2,則三角形內(nèi)切圓半徑為________.

查看答案和解析>>

扇形的面積為10,半徑為4cm,則扇形的圓心角是

(A)        (B)   (C)        (D)   5

 

查看答案和解析>>

扇形的面積為10,半徑為4cm,則扇形的圓心角是
A.B.C.D. 5

查看答案和解析>>

為了檢測某種產(chǎn)品的質(zhì)量,抽取了一個容量為100的樣本,數(shù)據(jù)的分組及頻率如下表:

分組

頻數(shù)

頻率

累積頻率

[10.75,10.85)

3

[10.8510.95)

9

[10.95,11.05)

13

[11.05,11.15)

16

[11.15,11.25)

26

[11.25,11.35)

20

[11.35,11.45)

7

[11.45,11.55)

4

[11.55,11.65)

2

合計

100

1)完成上面的頻率分布表;

2)根據(jù)上表畫出頻率分布直方圖和累積頻率分布圖;

3)根據(jù)上表和圖,估計數(shù)據(jù)落在[10.95,11.35]范圍內(nèi)的概率約是多少?

4)數(shù)據(jù)小于11.20的概率約是多少?

查看答案和解析>>

一、選擇題:(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)

1.B  2.A  3.B  4.B  5.C  6.D  7.D  8.C  9.B  10.A  11.D  12.A

二、填空題(本大題共4小題,每小題4分,共16分)

13.  14.  15.  16.

三、解答題:本大題共6小題,共74分.解答應寫出文字說明、證明過程或演算步驟.

 17.解:(Ⅰ)

=…………………………………………………3分

函數(shù)的周期

由題意可知………………………………………6分

(Ⅱ)由(Ⅰ)可知

………………………………………8分

由余弦定理知

 又,

…………………………………………………………………12分

18.證明:(Ⅰ)

…………………………………………………………………………4分

(Ⅱ)

平面平面…………………………………………8分

(Ⅲ)連接BE,易證明,由(2)知

平面………………………………………………………………………12分

19.解:(Ⅰ)設抽到相鄰兩個月的數(shù)據(jù)為事件A.因為從6組數(shù)據(jù)中選取2組數(shù)據(jù)共有15種情況,每種情況都是等可能出現(xiàn)的.其中抽到相鄰兩個月的數(shù)據(jù)的情況有5種,所以

P(A)=………………………………………………………………………………4分

(Ⅱ)由數(shù)據(jù)求得  由公式求得

再由,得所以y關于x的線性回歸方程為………8分

(Ⅲ)當時,

同樣,當時,

所以,該小組所得線性回歸方程是理想的………………………………………………12分

20.(Ⅰ)由題意得,解得………………………2分

所以

上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減……6分

(Ⅱ)因存在使得不等式成立

故只需要的最大值即可

①     若,則當時,單調(diào)遞增

時,

時,不存在使得不等式成立…………………………9分

②     當時,隨x的變化情況如下表:

x

+

0

-

時,

綜上得,即a的取值范圍是…………………………………………………12分

解法二:根據(jù)題意,只需要不等式上有解即可,即上有解,即不等式上有解即可……………………………9分

,只需要,而

,即a的取值范圍是………………………………………………………12分

21.因 �、�

 �、�

由①-②得………………………………4分

,故數(shù)列是首項為1,公比的等比數(shù)列

………………………………………………………………………6分

(Ⅱ)假設滿足題設條件的實數(shù)k,則………8分

由題意知,對任意正整數(shù)n恒有又數(shù)列單調(diào)遞增

所以,當時數(shù)列中的最小項為,則必有,則實數(shù)k最大值為1…………12分

22.解:(Ⅰ)由橢圓的方程知

設F的坐標為             

是⊙M的直徑,

橢圓的離心率…………………………………………6分

(Ⅱ)⊙M過點F,B,C三點,圓心M既在FC的垂直平分線上,也在BC的垂直平分線上,F(xiàn)C的垂直平分線方程為 �、�

BC的中點為

BC的垂直平分線方程為  ②

由①②得,

在直線上,

橢圓的方程為…………………………………………………………14分

 

 

 


同步練習冊答案
闂傚倷鑳舵灙濡ょ姴绻橀獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磻婵犲洤绠柨鐕傛嫹