9.在菱形ABCD中.若.則 A.2 B.-2 C.2或-2 D.與菱形闁炽儻鑵归埀顒婃嫹查看更多

 

題目列表(包括答案和解析)

在菱形ABCD中,若AC=2,則

[  ]

A.2

B.-2

C.

D.與菱形的邊長(zhǎng)有關(guān)

查看答案和解析>>

精英家教網(wǎng)如圖,在四棱錐O-ABCD中,底面ABCD四邊長(zhǎng)為1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn),N為BC的中點(diǎn)
(1)求三棱錐B-OCD的體積;
(2)求異面直線AB與MD所成角的大��;
注:若直線a⊥平面α,則直線a與平面α內(nèi)的所有直線都垂直.

查看答案和解析>>

在以下關(guān)于向量的命題中,不正確的是

[  ]
A.

若向量=(1,2),向量=(-2,1),則

B.

△ABC中,有

C.

△ABC中的夾角為角A

D.

已知四邊形ABCD,則四邊形ABCD是菱形的充要條件是,且||=||

查看答案和解析>>

如圖,在四棱錐O-ABCD中,底面ABCD四邊長(zhǎng)為1的菱形,∠ABC=
π3
,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn).
(1)求三棱錐B-OCD的體積;
(2)求異面直線AB與MD所成角的余弦值;
注:若直線a⊥平面α,則直線a與平面α內(nèi)的所有直線都垂直.

查看答案和解析>>

選擇題:

(1)在四邊形ABCD中,若,則四邊形ABCD

[  ]

A.矩形

B.菱形

C.正方形

D.平行四邊形

(2)已知向量,,,,若向量ab共線,則

[  ]

A

B

C

D

(3)已知ab為兩個(gè)單位向量,下列四個(gè)命題中正確的是

[  ]

Aab相等

B.如果ab平行,那么ab相等

Cab共線

D.如果ab平行,那么aba=-b

(4)已知兩個(gè)力的夾角為,它們的合力大小為10N,合力與的夾角為,那么的大小為

[  ]

AN

B5N

C10N

DN

(5)已知向量a表示“向東航行3km”,b表示“向南航行3km”,則ab表示

[  ]

A.向東南航行6km

B.向東南航行km

C.向東北航行km

D.向東北航行6km

(6)河水的流速為2m/s,一艘小船想沿垂直于河岸方向以10m/s的速度駛向?qū)Π�,則小船的靜水速度大小為

[  ]

A10m/s

Bm/s

Cm/s

D12m/s

查看答案和解析>>

一、選擇題:(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)

1.B  2.A  3.B  4.B  5.C  6.D  7.D  8.C  9.B  10.A  11.D  12.A

二、填空題(本大題共4小題,每小題4分,共16分)

13.  14.  15.  16.

三、解答題:本大題共6小題,共74分.解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟.

 17.解:(Ⅰ)

=…………………………………………………3分

函數(shù)的周期,

由題意可知………………………………………6分

(Ⅱ)由(Ⅰ)可知

………………………………………8分

由余弦定理知

 又,

…………………………………………………………………12分

18.證明:(Ⅰ)

…………………………………………………………………………4分

(Ⅱ)

平面平面…………………………………………8分

(Ⅲ)連接BE,易證明,由(2)知

平面………………………………………………………………………12分

19.解:(Ⅰ)設(shè)抽到相鄰兩個(gè)月的數(shù)據(jù)為事件A.因?yàn)閺?組數(shù)據(jù)中選取2組數(shù)據(jù)共有15種情況,每種情況都是等可能出現(xiàn)的.其中抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有5種,所以

P(A)=………………………………………………………………………………4分

(Ⅱ)由數(shù)據(jù)求得  由公式求得

再由,得所以y關(guān)于x的線性回歸方程為………8分

(Ⅲ)當(dāng)時(shí),

同樣,當(dāng)時(shí),

所以,該小組所得線性回歸方程是理想的………………………………………………12分

20.(Ⅰ)由題意得,解得………………………2分

所以

上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減……6分

(Ⅱ)因存在使得不等式成立

故只需要的最大值即可

①     若,則當(dāng)時(shí),單調(diào)遞增

當(dāng)時(shí),

當(dāng)時(shí),不存在使得不等式成立…………………………9分

②     當(dāng)時(shí),隨x的變化情況如下表:

x

+

0

-

當(dāng)時(shí),

綜上得,即a的取值范圍是…………………………………………………12分

解法二:根據(jù)題意,只需要不等式上有解即可,即上有解,即不等式上有解即可……………………………9分

,只需要,而

,即a的取值范圍是………………………………………………………12分

21.因  ①

時(shí) �、�

由①-②得………………………………4分

,故數(shù)列是首項(xiàng)為1,公比的等比數(shù)列

………………………………………………………………………6分

(Ⅱ)假設(shè)滿足題設(shè)條件的實(shí)數(shù)k,則………8分

由題意知,對(duì)任意正整數(shù)n恒有又?jǐn)?shù)列單調(diào)遞增

所以,當(dāng)時(shí)數(shù)列中的最小項(xiàng)為,則必有,則實(shí)數(shù)k最大值為1…………12分

22.解:(Ⅰ)由橢圓的方程知點(diǎn)

設(shè)F的坐標(biāo)為             

是⊙M的直徑,

橢圓的離心率…………………………………………6分

(Ⅱ)⊙M過點(diǎn)F,B,C三點(diǎn),圓心M既在FC的垂直平分線上,也在BC的垂直平分線上,F(xiàn)C的垂直平分線方程為 �、�

BC的中點(diǎn)為

BC的垂直平分線方程為  ②

由①②得,

在直線上,

橢圓的方程為…………………………………………………………14分

 

 

 


同步練習(xí)冊(cè)答案
闁稿骏鎷� 闂傚偊鎷�