21.等比數(shù)列中..公比.用表示它前n項(xiàng)的積:.則中最大的是 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列中,,數(shù)列中,,且點(diǎn)在直線上。

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和

(3)若,求數(shù)列的前項(xiàng)和;

【解析】第一問中利用數(shù)列的遞推關(guān)系式

,因此得到數(shù)列的通項(xiàng)公式;

第二問中, 即為:

即數(shù)列是以的等差數(shù)列

得到其前n項(xiàng)和。

第三問中, 又   

,利用錯(cuò)位相減法得到。

解:(1)

  即數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列

                  ……4分

(2) 即為:

即數(shù)列是以的等差數(shù)列

         ……8分

(3) 又   

   ①         ②

①-  ②得到

  

 

查看答案和解析>>

在等差數(shù)列{an}中,公差為d,前n項(xiàng)和為Sn.在等比數(shù)列{bn}中,公比為q,前n項(xiàng)和為S'n(n∈N*).
(1)在等差數(shù)列{an}中,已知S10=30,S20=100,求S30
(2)在等差數(shù)列{an}中,根據(jù)要求完成下列表格,并對(duì)①、②式加以證明(其中m、m1、m2、n∈N*).
用Sm表示S2mS2m=2Sm+m2d
、表示=______①
用Sm表示SnmSnm=______②
(3)在下列各題中,任選一題進(jìn)行解答,不必證明,解答正確得到相應(yīng)的分?jǐn)?shù)(若選做二題或更多題,則只批閱其中分值最高的一題,其余各題的解答,不管正確與否,一律視為無效,不予批閱):
(ⅰ) 類比(2)中①式,在等比數(shù)列{bn}中,寫出相應(yīng)的結(jié)論.
(ⅱ) (解答本題,最多得5分)類比(2)中②式,在等比數(shù)列{bn}中,寫出相應(yīng)的結(jié)論.
(ⅲ) (解答本題,最多得6分)在等差數(shù)列{an}中,將(2)中的①推廣到一般情況.
(ⅳ) (解答本題,最多得6分)在等比數(shù)列{bn}中,將(2)中的①推廣到一般情況.

查看答案和解析>>

.已知數(shù)列正數(shù)組成的數(shù)列,其前n項(xiàng)和為,對(duì)于一切均有與2的等差中項(xiàng)等于與2的等比中項(xiàng)。
(1)計(jì)算并由此猜想的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明(1)中你的猜想。

查看答案和解析>>

已知數(shù)列是正數(shù)組成的數(shù)列,其前n項(xiàng)和,對(duì)于一切均有與2的等差中項(xiàng)等于與2的等比中項(xiàng)。
(1)計(jì)算并由此猜想的通項(xiàng)公式
(2)用數(shù)學(xué)歸納法證明(1)中你的猜想。

查看答案和解析>>

已知數(shù)列滿足(I)求數(shù)列的通項(xiàng)公式;

(II)若數(shù)列,前項(xiàng)和為,且證明:

【解析】第一問中,利用,

∴數(shù)列{}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即 

第二問中, 

進(jìn)一步得到得    即

是等差數(shù)列.

然后結(jié)合公式求解。

解:(I)  解法二、,

∴數(shù)列{}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即 

(II)     ………②

由②可得: …………③

③-②,得    即 …………④

又由④可得 …………⑤

⑤-④得

是等差數(shù)列.

     

 

查看答案和解析>>


同步練習(xí)冊(cè)答案