題目列表(包括答案和解析)
已知函數(shù)f(x)=cos(2x+)+-+sinx·cosx
⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間; ⑵ 若xÎ[0,],求f(x)的最值;
⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
【解析】第一問中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp
第二問中,∵xÎ[0, ],∴2x-Î[-,],
∴當2x-=-,即x=0時,f(x)min=-,
當2x-=, 即x=時,f(x)max=1
第三問中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=
利用構(gòu)造角得到sin2a=sin[(2a-)+]
解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x ………2分
=sin2x-cos2x=sin(2x-) ……………………3分
⑴ 令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp ……………………5分
∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0, ],∴2x-Î[-,], ……………………7分
∴當2x-=-,即x=0時,f(x)min=-, ……………………8分
當2x-=, 即x=時,f(x)max=1 ……………………9分
⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=, ……………………11分
∴ sin2a=sin[(2a-)+]
=sin(2a-)·cos+cos(2a-)·sin ………12分
=×+×=
【答案】
【解析】設,有幾何意義知的最小值為, 又因為存在實數(shù)x滿足,所以只要2大于等于f(x)的最小值即可.即2,解得:∈,所以a的取值范圍是.故答案為:.
(本小題滿分14分)已知關(guān)于x的函數(shù)f(x)=+bx2+cx+bc,其導函數(shù)為f+(x)。令g(x)=∣f+(x) ∣,記函數(shù)g(x)在區(qū)間[-1、1]上的最大值為M。
(Ⅰ)如果函數(shù)f(x)在x=1處有極值-,試確定b、c的值;
(Ⅱ)若∣b∣>1,證明對任意的c,都有M>2;
(Ⅲ)若M≥K對任意的b、c恒成立,試求k的最大值。
已知關(guān)于x的函數(shù)f(x)=-+bx2+cx+bc,其導函數(shù)為.令g(x)=∣∣,記函數(shù)g(x)在區(qū)間[-1、1]上的最大值為M.
(Ⅰ)如果函數(shù)f(x)在x=1處有極值-,試確定b、c的值:
(Ⅱ)若∣b∣>1,證明對任意的c,都有M>2:
(Ⅲ)若M≥K對任意的b、c恒成立,試求k的最大值
已知關(guān)于x的函數(shù)f(x)=+bx2+cx+bc,其導函數(shù)為f+(x).令g(x)=∣f (x) ∣,記函數(shù)g(x)在區(qū)間[-1、1]上的最大值為M.
(Ⅰ)如果函數(shù)f(x)在x=1處有極值-,試確定b、c的值:
(Ⅱ)若∣b∣>1,證明對任意的c,都有M>2: w.w.w.k.s.5.u.c.o.m
(Ⅲ)若M≧K對任意的b、c恒成立,試求k的最大值。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com