觀測(cè)數(shù)據(jù)4041434344464748 查看更多

 

題目列表(包括答案和解析)

對(duì)具有線性相關(guān)關(guān)系的變量x、y有觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,10),它們之間的回歸直線方程是
.
y
=3x+20
,若
10
i=1
xi
=18,則
10
i=1
yi=
( 。

查看答案和解析>>

如圖是根據(jù)變量x,y的觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…10)得到的散點(diǎn)圖,由這些散點(diǎn)圖可以判斷變量x,y具有相關(guān)關(guān)系的圖是(  )

查看答案和解析>>

精英家教網(wǎng)對(duì)一個(gè)作直線運(yùn)動(dòng)的質(zhì)點(diǎn)的運(yùn)動(dòng)過(guò)程觀測(cè)了8次,第i次觀測(cè)得到的數(shù)據(jù)為ai,具體如下表所示:
觀測(cè)次數(shù)i 1 2 3 4 5 6 7 8
觀測(cè)數(shù)據(jù)ai 40 41 43 43 44 46 47 48
在對(duì)上述統(tǒng)計(jì)數(shù)據(jù)的分析中,一部分計(jì)算見(jiàn)如圖所示的算法流程圖(其中
.
a
是這8個(gè)數(shù)據(jù)的平均數(shù)),則輸出的S的值是
 

查看答案和解析>>

為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做10次和15次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為l1和l2.已知兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)數(shù)據(jù)的平均數(shù)都為s,對(duì)變量y的觀測(cè)數(shù)據(jù)的平均數(shù)都為t,則下列說(shuō)法正確的是(  )

查看答案和解析>>

已知兩個(gè)變量x與y之間具有線性相關(guān)關(guān)系,5次試驗(yàn)的觀測(cè)數(shù)據(jù)如下:
x 100 120 140 160 180
y 45 54 62 75 92
那么變量y關(guān)于x的回歸直線方程只可能是( 。
A、
y
=0.575x-14.9
B、
y
=0.572x-13.9
C、
y
=0.575x-12.9
D、
y
=0.572x-14.9

查看答案和解析>>

一、填空題:本大題共14小題,每小題5分,計(jì)70分.

1.      2.       3.     4.      5.68      6. 4      7. 7      8.

9.     10. 若點(diǎn)P在兩漸近線上的射影分別為、,則必為定值

11.②③          12.         13.1        14.

 

二、解答題:本大題共6小題,計(jì)90分.

15. 解: (Ⅰ)因?yàn)?sub>,∴,則…………………………………………(4分)

  ∴……………………………………………………………………………(7分)

   (Ⅱ)由,得,∴…………………………………………(9分)

   則 …………………………………………(11分)

由正弦定理,得,∴的面積為………………………(14分)

16. (Ⅰ)解:因?yàn)?sub>,,且,

所以……………………………………………………………………………………………(4分)

   又,所以四邊形為平行四邊形,則……………………………………(6分)

   而,故點(diǎn)的位置滿足………………………………………………………(7分)

(Ⅱ)證: 因?yàn)閭?cè)面底面,,且,

所以,則…………………………………………………………………(10分)

   又,且,所以 …………(13分)

   而,所以…………………………………………………(14分)

17. 解:(Ⅰ)因?yàn)?sub>,所以的面積為()………………………(2分)

   設(shè)正方形的邊長(zhǎng)為,則由,得,

解得,則…………………………………………………………………(6分)

   所以,則 ………………(9分)

   (Ⅱ)因?yàn)?sub>,所以……………(13分)

   當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí).所以當(dāng)長(zhǎng)為時(shí),有最小值1…………………(15分)

18. 解:(Ⅰ)設(shè)圓心,則,解得…………………………………(3分)

則圓的方程為,將點(diǎn)的坐標(biāo)代入得,故圓的方程為………(5分)

(Ⅱ)設(shè),則,且…………………………(7分)

==,所以的最小值為(可由線性規(guī)劃或三角代換求得)…(10分)

(Ⅲ)由題意知, 直線和直線的斜率存在,且互為相反數(shù),故可設(shè),

,由,得 ………(11分)

  因?yàn)辄c(diǎn)的橫坐標(biāo)一定是該方程的解,故可得………………………………(13分)

  同理,,所以=

  所以,直線一定平行…………………………………………………………………………(15分)

19. (Ⅰ)解:因?yàn)?sub>…………………………………(2分)

;由,所以上遞增,

上遞減 …………………………………………………………………………………………(4分)

上為單調(diào)函數(shù),則………………………………………………………(5分)

(Ⅱ)證:因?yàn)?sub>上遞增,在上遞減,所以處取得極小值(7分)

 又,所以上的最小值為 …………………………………(9分)

 從而當(dāng)時(shí),,即…………………………………………………………(10分)

(Ⅲ)證:因?yàn)?sub>,所以即為,

   令,從而問(wèn)題轉(zhuǎn)化為證明方程=0

上有解,并討論解的個(gè)數(shù)……………………………………………………………………(12分)

   因?yàn)?sub>,,所以

   ①當(dāng)時(shí),,所以上有解,且只有一解 ……(13分)

②當(dāng)時(shí),,但由于,

所以上有解,且有兩解 …………………………………………………………(14分)

③當(dāng)時(shí),,所以上有且只有一解;

當(dāng)時(shí),,

所以上也有且只有一解…………………………………………………………(15分)

綜上所述, 對(duì)于任意的,總存在,滿足,

且當(dāng)時(shí),有唯一的適合題意;當(dāng)時(shí),有兩個(gè)適合題意…………(16分)

(說(shuō)明:第(Ⅱ)題也可以令,,然后分情況證明在其值域內(nèi),并討論直線與函數(shù)的圖象的交點(diǎn)個(gè)數(shù)即可得到相應(yīng)的的個(gè)數(shù))

20.(Ⅰ)解:由題意得,,所以=……………………(4分)

(Ⅱ)證:令,,則=1………………………………………………(5分)

所以=(1),=(2),

(2)―(1),得=,

化簡(jiǎn)得(3)……………………………………………………………(7分)

(4),(4)―(3)得 …………(9分)

在(3)中令,得,從而為等差數(shù)列 …………………………………………(10分)

(Ⅲ)記,公差為,則=…………………(12分)

,

…………………………………………(14分)

,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立……………(16分)

 

 

數(shù)學(xué)附加題部分

21.A.(幾何證明選講選做題)

解:因?yàn)镻B=PD+BD=1+8=9,=PD?BD=9,PA=3,AE=PA=3,連結(jié)AD,在中,得……(5分)

,所以 …………………………………………………………………(10分)

B.(矩陣與變換選做題)

解: (Ⅰ)設(shè),則有=,=,

所以,解得 …………………………………………………………(4分)

所以M=,從而= ………………………………………………………………(7分)

(Ⅱ)因?yàn)?sub>且m:2,

所以2(x+2y)-(3x+4y)=4,即x+4 =0,這就是直線l的方程 ………………………………………(10分)

C.(坐標(biāo)系與參數(shù)方程選做題)

解:將極坐標(biāo)方程轉(zhuǎn)化為普通方程:……………………………………………(2分)

   可化為…………………………………………………………(5分)

上任取一點(diǎn)A,則點(diǎn)A到直線的距離為

,它的最大值為4 ……………………………(10分)

D.(不等式選講選做題)

證:左=…(5分)

  ……………………(10分)

22.解:以O(shè)A、OB所在直線分別x軸,y軸,以過(guò)O且垂直平面ABCD的直線為z軸,建立空間直角坐標(biāo)系,則,…(2分)

(Ⅰ)設(shè)平面PDB的法向量為

同步練習(xí)冊(cè)答案