從而.所以在上為增函數(shù). 查看更多

 

題目列表(包括答案和解析)

若對(duì)任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”;
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于x、y的廣義“距離”的序號(hào):
①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=
x-y

能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號(hào)是
 

查看答案和解析>>

若對(duì)任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x,y的二元函數(shù).
定義:滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x,y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
給出三個(gè)二元函數(shù):①f(x,y)=(x-y)2;②f(x,y)=|x-y|; ③f(x,y)=
x-y

請(qǐng)選出所有能夠成為關(guān)于x,y的廣義“距離”的序號(hào)

查看答案和解析>>

(2011•晉中三模)若對(duì)任意的x∈A,y∈B,(A⊆R,B⊆R),有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
今給出下列四個(gè)二元函數(shù):①f(x,y)=|x-y|;  ②f(x,y)=(x-y)2;
f(x,y)=
x-y
; ④f(x,y)=x2+y2
能夠稱為關(guān)于實(shí)數(shù)x、y的廣義“距離”的函數(shù)的序號(hào)是
①④
①④

查看答案和解析>>

設(shè)函數(shù)f(x)=ex-x-1,g(x)=e2x-x-7.
(1)解不等式f(x)≤g(x);
(2)事實(shí)上:對(duì)于?x∈R,有f(x)≥0成立,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào).由此結(jié)論證明:(1+
1x
)x
<e,(x>0).

查看答案和解析>>

若對(duì)任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x,y的二元函數(shù).
定義:滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x,y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
給出三個(gè)二元函數(shù):①f(x,y)=(x-y)2;②f(x,y)=|x-y|; ③f(x,y)=
請(qǐng)選出所有能夠成為關(guān)于x,y的廣義“距離”的序號(hào)   

查看答案和解析>>


同步練習(xí)冊(cè)答案