3. 4. 查看更多

 

題目列表(包括答案和解析)

5、4.設(shè)m、n是兩條不同的直線,α、β是兩相沒的平面,則下列命題中的真命題是( 。

查看答案和解析>>

11、4位同學(xué)參加某種形式的競賽,競賽規(guī)則規(guī)定:每位同學(xué)必須從甲、乙兩道題中任選一題作答,選甲題答對得21分,答錯得-21分;選乙題答對得7分,答錯得-7分.若4位同學(xué)的總分為0,則這4位同學(xué)不同得分情況的種數(shù)是( 。

查看答案和解析>>

4-2 矩陣與變換
求將曲線y2=x繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后所得的曲線方程.

查看答案和解析>>


x 3 4 5 6
y 2.5 3 4 4.5
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=
b
x+
a
;
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

例4.若x∈(0,1),a>0且a≠1,求證:|loga(1-x)|>loga(1+x)|.

查看答案和解析>>

一、填空題

1.   2.,    3.    4.2   5.1     6.

7.50   8.  9.-2   10.    11.2     12.

13.2     14.

二、解答題

15[解]:證:設(shè)   ,連 。                    

 ⑴  ∵為菱形,   ∴ 中點(diǎn),又中點(diǎn)。

      ∴                              (5分) 

      又 , (7分)

 ⑵ ∵為菱形,   ∴,              (9分)

   又∵    (12分)

   又     ∴

         ∴             (14分)

16[解]:解:⑴ ∵ , ∴  ,∴ (1分)

       又                         (3分)

        ∴

        ∴ 。                        (6分)

        ⑵ (8分)

        ∵,∴,

        ∴                (10分)

         

             (13分)

          (當(dāng)時(shí)取“”)   

所以的最大值為,相應(yīng)的    (14分)

17.解:⑴直線的斜率 ,中點(diǎn)坐標(biāo)為 ,

        ∴直線方程為     (4分)

        ⑵設(shè)圓心,則由上得:

                             ①      

        又直徑,,

         

           ②       (7分)

由①②解得

∴圓心                  

∴圓的方程為  或  (9分)                         

 ⑶  ,∴ 當(dāng)△面積為時(shí) ,點(diǎn)到直線的距離為 。                   (12分)

 又圓心到直線的距離為,圓的半徑   

∴圓上共有兩個(gè)點(diǎn)使 △的面積為  .  (14分)

18[解] (1)乙方的實(shí)際年利潤為:  .   (5分)

當(dāng)時(shí),取得最大值.

      所以乙方取得最大年利潤的年產(chǎn)量 (噸).…………………8分

 (2)設(shè)甲方凈收入為元,則

學(xué)科網(wǎng)(Zxxk.Com) 將代入上式,得:.   (13分)

    又

    令,得

    當(dāng)時(shí),;當(dāng)時(shí),,所以時(shí),取得最大值.

    因此甲方向乙方要求賠付價(jià)格 (元/噸)時(shí),獲最大凈收入.  (16分)

 

19. 解:⑴ 由 ,令 (2分)

   ∴所求距離的最小值即為到直線的距離(4分)

                      (7分)

   ⑵假設(shè)存在正數(shù),令 (9分)

   由得:  

   ∵當(dāng)時(shí), ,∴為減函數(shù);

   當(dāng)時(shí),,∴ 為增函數(shù).

   ∴         (14分)

   ∴

的取值范圍為        (16分)

 

20. 解:⑴由條件得:  ∴  (3分)

     ∵為等比數(shù)列∴(6分)

      ⑵由   得            (8分)

     又   ∴                    (9分)

 ⑶∵

          

(或由

為遞增數(shù)列。                              (11分)

從而       (14分)

                            (16分)

附加題答案

21.         (8分)

22. 解:⑴①當(dāng)時(shí),

       ∴                                                      (2分)

        ②當(dāng)時(shí),

       ∴                                                 (4分)

        ③當(dāng)時(shí),

       ∴                                                (6分)

       綜上該不等式解集為                                   (8分)

23. (1);       (6分)

(2)AB=              (12分)

24. 解: ⑴設(shè)為軌跡上任一點(diǎn),則

                                             (4分)

       化簡得:   為求。                                (6分)

       ⑵設(shè)

         ∵  ∴                        (8分)

         ∴ 為求                                   (12分)


同步練習(xí)冊答案