題目列表(包括答案和解析)
“”是“函數(shù)”的最小正周期為”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件[來源:學.科.網(wǎng)]
函數(shù)是
A.最小正周期是π的偶函數(shù) | B.最小正周期是π的奇函數(shù)學科網(wǎng) |
C.最小正周期是2π的偶函數(shù) | D.最小正周期是2π的奇函數(shù)學科網(wǎng) |
已知函數(shù),給出下列四個命題:
①若
②的最小正周期是;
③在區(qū)間上是增函數(shù);[來源:學科網(wǎng)]
④的圖象關于直線對稱;
⑤當時,的值域為
其中正確的命題為 ( )
A.①②④ B.③④⑤ C.②③ D.③④
已知函數(shù),給出下列四個命題:學科網(wǎng)
①若,則; ②的最小正周期是;學科網(wǎng)
③在區(qū)間上是增函數(shù); ④的圖象關于直線對稱學科網(wǎng)
A.①②④ B.①③ C.②③ D.③④學科網(wǎng)
下列命題正確的是( )[來源:學科網(wǎng)ZXXK]
A.函數(shù)在區(qū)間內(nèi)單調(diào)遞增
B.函數(shù)的最小正周期為
C.函數(shù)的圖像是關于點成中心對稱的圖形
D.函數(shù)的圖像是關于直線成軸對稱的圖形
一、填空題
1. 2., 3. 4.2 5.1 6.
7.50 8. 9.-2 10. 11.2 12.
13.2 14.
二、解答題
15[解]:證:設 ,連 。
⑴ ∵為菱形, ∴ 為中點,又為中點。
∴∥ (5分)
又 , ∴∥(7分)
⑵ ∵為菱形, ∴, (9分)
又∵, ∴ (12分)
又 ∴ 又
∴ (14分)
16[解]:解:⑴ ∵ , ∴ ,∴ (1分)
又 (3分)
∴
∴ 。 (6分)
⑵, (8分)
∵,∴, 。
∴ (10分)
(13分)
(當 即 時取“”)
所以的最大值為,相應的 (14分)
17.解:⑴直線的斜率 ,中點坐標為 ,
∴直線方程為 (4分)
⑵設圓心,則由在上得:
①
又直徑,,
又
∴ ② (7分)
由①②解得或
∴圓心 或
∴圓的方程為 或 (9分)
⑶ ,∴ 當△面積為時 ,點到直線的距離為 。 (12分)
又圓心到直線的距離為,圓的半徑 且
∴圓上共有兩個點使 △的面積為 . (14分)
18[解] (1)乙方的實際年利潤為: . (5分)
,
當時,取得最大值.
所以乙方取得最大年利潤的年產(chǎn)量 (噸).…………………8分
(2)設甲方凈收入為元,則.
將代入上式,得:. (13分)
又
令,得.
當時,;當時,,所以時,取得最大值.
因此甲方向乙方要求賠付價格 (元/噸)時,獲最大凈收入. (16分)
19. 解:⑴ 由 得 ,令 得 (2分)
∴所求距離的最小值即為到直線的距離(4分)
(7分)
⑵假設存在正數(shù),令 則(9分)
由得:
∵當時, ,∴為減函數(shù);
當時,,∴ 為增函數(shù).
∴ (14分)
∴ ∴
∴的取值范圍為 (16分)
20. 解:⑴由條件得: ∴ (3分)
∵ ∴ ∴為等比數(shù)列∴(6分)
⑵由 得 (8分)
又 ∴ (9分)
⑶∵
(或由即)
∴為遞增數(shù)列。 (11分)
∴從而 (14分)
∴
(16分)
附加題答案
21. (8分)
22. 解:⑴①當時,
∴ (2分)
②當時,
∴ (4分)
③當時,
∴ (6分)
綜上該不等式解集為 (8分)
23. (1); (6分)
(2)AB= (12分)
24. 解: ⑴設為軌跡上任一點,則
(4分)
化簡得: 為求。 (6分)
⑵設,,
∵ ∴ (8分)
∴ 或 為求 (12分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com