題目列表(包括答案和解析)
設函數(shù)在上的導函數(shù)為,在上的導函數(shù)為,若在上,恒成立,則稱函數(shù)在上為“凸函數(shù)”.已知當時,在上是“凸函數(shù)”,則在上( )
A.既沒有最大值,也沒有最小值 B.既有最大值,也有最小值
C.有最大值,沒有最小值 D.沒有最大值,有最小值
設函數(shù)在上的導函數(shù)為,在上的導函數(shù)為,若在上,恒成立,則稱函數(shù)在上為“凸函數(shù)”.已知當時,在上是“凸函數(shù)”,則在上( )
A.既沒有最大值,也沒有最小值 | B.既有最大值,也有最小值 |
C.有最大值,沒有最小值 | D.沒有最大值,有最小值 |
A.既沒有最大值,也沒有最小值 | B.既有最大值,也有最小值 |
C.有最大值,沒有最小值 | D.沒有最大值,有最小值 |
設函數(shù)在上的導函數(shù)為,在上的導函數(shù)為,若在上,恒成立,則稱函數(shù)在上為“凸函數(shù)”.已知.
(Ⅰ)若為區(qū)間上的“凸函數(shù)”,則實數(shù)= ;
(Ⅱ)若當實數(shù)滿足時,函數(shù)在上總為“凸函數(shù)”,則的最大值為
設函數(shù)在上的導函數(shù)為,且,下面的不等式在上恒成立的是 ( )
A. B. C. D.
一、選擇題(本大題共10小題,每小題5分,共50分)
1.D 2.B 3.C 4.C 5.D 6.B 7.C 8.A 9.C 10.B
二、填空題(本大題共4小題,每小題5分,共20分)
11. 12.4 13.70,10,32 14. 15.
三、解答題(本大題共6小題,共80分)
16.(本小題滿分12分)
解:(Ⅰ)…………………………………2分
……………………………………………………3分
………………………………………………………5分
∴函數(shù)的最小正周期…………………………………………6分
(Ⅱ)當時,………………………………………8分
∴………………………………………………………………10分
∴的值域是………………………………………………………12分
17.(本小題滿分12分)
解:設:用、、分別表示3枚鑰匙,其中是房門鑰匙,則這個隨機事件可看作是三枚鑰匙的一個排序,它包含了:、、、、、共6個基本事件;………………………………4分
(Ⅰ)設:用表示事件“恰好第三次打開房門鎖”,則事件包括、共兩個基本事件:……………………………………………………………………6分
…………………………………………………………………………8分
(Ⅱ)設:用表示事件“兩次內打開房門鎖”,則事件包含:、、、共4個基本事件:………………………………………………………10分
答:恰好第三次打開房門鎖的概率是,兩次內打開的概率是. ……………12分
18.(本小題滿分14分)
(Ⅰ) 證明:依題意:,且在平面外.……………………2分
∴平面…………………………………………………………………4分
(Ⅱ) 證明:連結
∴平面…………5分
又∵在上,∴在平面上
∴…………………………6分
∵ ∴
∴
∴中,………………………………………7分
同理:
∵中,
∴………………………………………………………………………8分
∴平面……………………………………………………………10分
(Ⅲ)解:∵平面
∴所求體積……………………………………………12分
…………………………………………14分
19.(本小題滿分14分)
解:(Ⅰ) 根據(jù)題意,得
………………………………………………………3分
解得……………………………………………………………………6分
(Ⅱ)由(Ⅰ)
∴……………………10分
∴………………14分
20.(本小題滿分14分)
解:(Ⅰ) 依題意:. ……………………………………………………2分
∴ ∴所求方程為. ……………………………………………4分
(Ⅱ)設動圓圓心為,(其中),、的坐標分別為,
因為圓過,故設圓的方程……………6分
∵、是圓和軸的交點
∴令得:…………………………………………………8分
則,
…………………10分
又∵圓心在拋物線上
∴ …………………………………………………………………11分
∴………………………………….12分
∴當時,(定值). ……………………………………………14分
21.(本小題滿分14分)
解:由函數(shù)得,………………3分
(Ⅰ) 若為區(qū)間上的“凸函數(shù)”,則有在區(qū)間上恒成立,由二次函數(shù)的圖像,當且僅當
,
即. …………………………………………………7分
(Ⅱ)當時,恒成立當時,恒成立.……………………………………………………………………………8分
當時,顯然成立。 …………………………………9分
當,
∵的最小值是.
∴.
從而解得 …………………………………………………………………1分
當,
∵的最大值是,∴,
從而解得. ………………………………………………………………13分
綜上可得,從而 ………………………………14分
如上各題若有其它解法,請評卷老師酌情給分.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com