題目列表(包括答案和解析)
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點P,Q,已知:=1:2, :=3:2,連結AQ,BP,設它們交于點R,若=a,=b.
(1)用a與 b表示;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
(本小題滿分14分)已知A(8,0),B、C兩點分別在y軸和x軸上運動,并且滿足。
(1)求動點P的軌跡方程。
(2)若過點A的直線L與動點P的軌跡交于M、N兩點,且
其中Q(-1,0),求直線L的方程.
(本小題滿分14分)
已知函數,a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)討論的單調性;
(Ⅱ)設a=3,求在區(qū)間{1,}上值域。期中e=2.71828…是自然對數的底數。
(本小題滿分14分)
已知數列{an}和{bn}滿足:a1=λ,an+1=其中λ為實數,n為正整數。
(Ⅰ)對任意實數λ,證明數列{an}不是等比數列;
(Ⅱ)試判斷數列{bn}是否為等比數列,并證明你的結論;
(Ⅲ)設0<a<b,Sn為數列{bn}的前n項和。是否存在實數λ,使得對任意正整數n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由。
(本小題滿分14分)
如圖(1),是等腰直角三角形,,、分別為、的中點,將沿折起, 使在平面上的射影恰為的中點,得到圖(2).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
一、選擇題(本大題共10小題,每小題5分,共50分)
1.D 2.B 3.C 4.C 5.D 6.B 7.C 8.A 9.C 10.B
二、填空題(本大題共4小題,每小題5分,共20分)
11. 12.4 13.70,10,32 14. 15.
三、解答題(本大題共6小題,共80分)
16.(本小題滿分12分)
解:(Ⅰ)…………………………………2分
……………………………………………………3分
………………………………………………………5分
∴函數的最小正周期…………………………………………6分
(Ⅱ)當時,………………………………………8分
∴………………………………………………………………10分
∴的值域是………………………………………………………12分
17.(本小題滿分12分)
解:設:用、、分別表示3枚鑰匙,其中是房門鑰匙,則這個隨機事件可看作是三枚鑰匙的一個排序,它包含了:、、、、、共6個基本事件;………………………………4分
(Ⅰ)設:用表示事件“恰好第三次打開房門鎖”,則事件包括、共兩個基本事件:……………………………………………………………………6分
…………………………………………………………………………8分
(Ⅱ)設:用表示事件“兩次內打開房門鎖”,則事件包含:、、、共4個基本事件:………………………………………………………10分
答:恰好第三次打開房門鎖的概率是,兩次內打開的概率是. ……………12分
18.(本小題滿分14分)
(Ⅰ) 證明:依題意:,且在平面外.……………………2分
∴平面…………………………………………………………………4分
(Ⅱ) 證明:連結
∴平面…………5分
又∵在上,∴在平面上
∴…………………………6分
∵ ∴
∴
∴中,………………………………………7分
同理:
∵中,
∴………………………………………………………………………8分
∴平面……………………………………………………………10分
(Ⅲ)解:∵平面
∴所求體積……………………………………………12分
…………………………………………14分
19.(本小題滿分14分)
解:(Ⅰ) 根據題意,得
………………………………………………………3分
解得……………………………………………………………………6分
(Ⅱ)由(Ⅰ)
∴……………………10分
∴………………14分
20.(本小題滿分14分)
解:(Ⅰ) 依題意:. ……………………………………………………2分
∴ ∴所求方程為. ……………………………………………4分
(Ⅱ)設動圓圓心為,(其中),、的坐標分別為,
因為圓過,故設圓的方程……………6分
∵、是圓和軸的交點
∴令得:…………………………………………………8分
則,
…………………10分
又∵圓心在拋物線上
∴ …………………………………………………………………11分
∴………………………………….12分
∴當時,(定值). ……………………………………………14分
21.(本小題滿分14分)
解:由函數得,………………3分
(Ⅰ) 若為區(qū)間上的“凸函數”,則有在區(qū)間上恒成立,由二次函數的圖像,當且僅當
,
即. …………………………………………………7分
(Ⅱ)當時,恒成立當時,恒成立.……………………………………………………………………………8分
當時,顯然成立。 …………………………………9分
當,
∵的最小值是.
∴.
從而解得 …………………………………………………………………1分
當,
∵的最大值是,∴,
從而解得. ………………………………………………………………13分
綜上可得,從而 ………………………………14分
如上各題若有其它解法,請評卷老師酌情給分.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com