(Ⅱ)考慮不符合題設(shè)條件的函數(shù) 查看更多

 

題目列表(包括答案和解析)

(2003•北京)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:(i)f(-1)=f(1)=0;(ii)對(duì)任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)證明:對(duì)任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)判斷函數(shù)g(x)=
1+x,x∈[-1,0)
1-x,x∈[0,1]
是否滿足題設(shè)條件;
(Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的函數(shù)y=f(x),且使得對(duì)任意的u,v∈[-1,1],都有|f(u)-f(v)|=u-v.
若存在,請(qǐng)舉一例:若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(2013•長(zhǎng)春一模)對(duì)于非空實(shí)數(shù)集A,記A*={y|?x∈A,y≥x}.設(shè)非空實(shí)數(shù)集合M、P滿足:M⊆P,且若x>1,則x∉P.現(xiàn)給出以下命題:
①對(duì)于任意給定符合題設(shè)條件的集合M、P,必有P*⊆M*;
②對(duì)于任意給定符合題設(shè)條件的集合M、P,必有M*∩P≠∅;
③對(duì)于任意給定符合題設(shè)條件的集合M、P,必有M∩P*=∅;
④對(duì)于任意給定符合題設(shè)條件的集合M、P,必存在常數(shù)a,使得對(duì)任意的b∈M*,恒有a+b∈P*,
其中正確的命題是( 。

查看答案和解析>>

(2012•福建模擬)對(duì)于非空實(shí)數(shù)集A,記A*={y|?x∈A,y≥x}.設(shè)非空實(shí)數(shù)集合M⊆P,若m>1時(shí),則m∉P. 現(xiàn)給出以下命題:
①對(duì)于任意給定符合題設(shè)條件的集合M、P,必有P*⊆M*
②對(duì)于任意給定符合題設(shè)條件的集合M、P,必有M*∩P≠∅;
③對(duì)于任意給定符合題設(shè)條件的集合M、P,必有M∩P*=∅;
④對(duì)于任意給定符合題設(shè)條件的集合M、P,必存在常數(shù)a,使得對(duì)任意的b∈M*,恒有a+b∈P*;
其中正確的命題是
①④
①④
(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

對(duì)于非空實(shí)數(shù)集,記.設(shè)非空實(shí)數(shù)集合,若時(shí),則. 現(xiàn)給出以下命題:

①對(duì)于任意給定符合題設(shè)條件的集合,必有;

②對(duì)于任意給定符合題設(shè)條件的集合,必有

③對(duì)于任意給定符合題設(shè)條件的集合,必有

④對(duì)于任意給定符合題設(shè)條件的集合,必存在常數(shù),使得對(duì)任意的,恒有

其中正確的命題是                .(寫(xiě)出所有正確命題的序號(hào))

 

查看答案和解析>>

(03年北京卷文)(14分)

設(shè)是定義在區(qū)間上的函數(shù),且滿足條件:

   (i)

   (ii)對(duì)任意的

   (Ⅰ)證明:對(duì)任意的

   (Ⅱ)判斷函數(shù)是否滿足題設(shè)條件;

   (Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的函數(shù),且使得對(duì)任意的

           

若存在,請(qǐng)舉一例:若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案