題目列表(包括答案和解析)
設函數(shù)是定義域為R的奇函數(shù).
(1)求k值;
(2)(文)當時,試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.
設函數(shù)是定義域為R的奇函數(shù).
(1)求k值;
(2)(文)當時,試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.
本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
設函數(shù)是定義域為R的奇函數(shù).
(1)求k值;
(2)(文)當時,試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.
第1卷
一、選擇題
1.D 2.B 3.B 4.C 5.A 6.C 7.B 8.A 9.D 10.C 11.A 12.A
第Ⅱ卷
二、填空題
13.
14.(理)(文)3x+3y-2=0
15.(-3,0)(3,+∞)
16.②④
三、解答題
17.(Ⅰ)這批食品不能出廠的概率是:
(Ⅱ)五項指標全部檢驗完畢,這批食品可以出廠的概率是:
五項指標全部檢驗完畢,這批食品不能出廠的概率是:
由互斥事件有一個發(fā)生的概率加法公式可知,五項指標全部檢驗完畢,
才能確定這批食品出廠與否的概率是:
18.(Ⅰ)設f(x)=ax+b(a≠0),則c的方程為:
①
由點(2,)在曲線c上,得1=(2一b). ②
由①②解得a=b=1,∴曲線c的方程為y=x-1.
(Ⅱ)由,點(n+1,)底曲線c上,有=n
于是.?…?,
即
注意到a1=1,所以an=(n-1)!
(Ⅲ)
∴.
19.(甲)(Ⅰ)選取DA1、DC、DD1,分別為Ox、Oy、Oy軸建立空間直角坐標,易知E(0,0,),F(xiàn)(,,0),B1(1,1,1),C(0,1,0),
,
=0,
.
(Ⅱ)G(0,,-1),Cl(0,1,1),
.
(Ⅲ),
(乙)
(Ⅰ)用反證法易證B1D1與A1D不垂直.
(Ⅱ)由余弦有cos∠AC1D1=
設AC1=x,則
上
單調(diào)遞增.
(Ⅲ)∵A1B1∥C1D1,∴∠AC1D1為異面直線AC1與A1B1所成角.
由余弦定理,有
設AC1=x,則
故AC1與A1B1所成角的取值范圍是
20.(理)解:
(Ⅰ)∵f(x)與g(x)的圖像關于直線x-1=0對稱,
∴f(x)=g(2-x).
,
f(x)=g(2一x)=-ax+2x3.
又f(x)是偶函數(shù),∴
f(x)=f(-x)=ax一2x3.
(Ⅱ)f(x)=a-6x2,∵f(x)為[0,1]上的增函數(shù).
∴f'(x)=a-6x2≥0,
∴a≥6x2在上,恒成立.
∵x[0,1)時,6x2≤6,∴a≥6.
即a的取值范圍是[6,+∞).
(Ⅲ)當a在[0,1)上的情形.
由f'(x)=0,得得a=6.此時x=1
∴當a(-6,6)時,f(x)的最大值不可能是4.
(文)
(1)
(2)根據(jù)題意可得,
整理得(ax-a)(ax+a-1)<0.
由于a>1,所以x<1.
即.
21.解:
(Ⅰ)∵|PF1|一|PF2|=2a,又|PF1|=3|PF2|.
∴|PF1|=3a,|PF2|=a.
設F1(-c,0),F(xiàn)2(c,0),P(x0,y0),由得3a=ex0+a,則x0=.
∵P在雙曲線右支上,∴x1≥a,即≥a,解得
1<e≤2.
∴e的最大值為2,此時
∴漸近線方程為,
(Ⅱ).
又.
∴.
又.
.
∴b2=C2-a2=6.
∴雙曲線方程為.
22.(理)解:
(1)可求得f(x)=.
由f(x)<f(1)得.
整理得(ax-a)(ax+a―1)<0.
由于a>l,所以x<1.
(Ⅱ)
=,
由,
,
即f(2)>2f(1).
即f(3)>3f(1).
(Ⅲ)更一般地,有:f(n)>nf(1) (n *,n≥2).
用數(shù)學歸納法證明,
①由(Ⅱ)知n=2,3時,不等式成立.
②假設n=k時,不等式成立,即f(k)>kf(1).
.
這說明n=k+1時,不等式也成立.
由①②可知,對于一切,均有f(x)>nf(1).
(文)解:
(Ⅰ)∵f(x)與g(x)的圖像關于直線x-1=0對稱.
∴f(x)=g(2-x),當x[-1,0]時,2一x[2,3]
f(x)=g(2一x)=一ax+2x3.
又∵f(x)是偶函數(shù),∴x[0,1]時,一x[一1,0]
f(x)=f(一x)=ax一2x3.
(Ⅱ)上的增函數(shù).
上恒成立
.
即a的取值范圍是[6,+∞].
(Ⅲ)只考慮在[0,1)上的情形.
由.
∴當的最大值不可能是4.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com