(Ⅱ)若當(dāng)點(diǎn)P的坐標(biāo)為()時(shí)..求雙曲線(xiàn)的方程. 查看更多

 

題目列表(包括答案和解析)

14、若點(diǎn)A的坐標(biāo)為(-3,2),F(xiàn)為拋物線(xiàn)y2=-4x的焦點(diǎn),點(diǎn)P是拋物線(xiàn)上的動(dòng)點(diǎn),當(dāng)|PA|+|PF|取最小值時(shí),P的坐標(biāo)為
(-1,2)

查看答案和解析>>

若點(diǎn)A的坐標(biāo)為(-3,2),F(xiàn)為拋物線(xiàn)y2=-4x的焦點(diǎn),點(diǎn)P是拋物線(xiàn)上的動(dòng)點(diǎn),當(dāng)|PA|+|PF|取最小值時(shí),P的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

若點(diǎn)A的坐標(biāo)為(-3,2),F(xiàn)為拋物線(xiàn)y2=-4x的焦點(diǎn),點(diǎn)P是拋物線(xiàn)上的動(dòng)點(diǎn),當(dāng)|PA|+|PF|取最小值時(shí),P的坐標(biāo)為   

查看答案和解析>>

若點(diǎn)A的坐標(biāo)為(-3,2),F(xiàn)為拋物線(xiàn)y2=-4x的焦點(diǎn),點(diǎn)P是拋物線(xiàn)上的動(dòng)點(diǎn),當(dāng)|PA|+|PF|取最小值時(shí),P的坐標(biāo)為_(kāi)_______.

查看答案和解析>>

點(diǎn)P到x軸的距離比它到點(diǎn)(0,1)的距離小1,稱(chēng)點(diǎn)P的軌跡為曲線(xiàn)C,點(diǎn)M為直線(xiàn)l:y=-m (m>0)上任意一點(diǎn),過(guò)點(diǎn)M作曲線(xiàn)C的兩條切線(xiàn)MA,MB,切點(diǎn)分別為A,B.
(1)求曲線(xiàn)C的軌跡方程;
(2)當(dāng)M的坐標(biāo)為(0,-l)時(shí),求過(guò)M,A,B三點(diǎn)的圓的標(biāo)準(zhǔn)方程,并判斷直線(xiàn)l與此圓的位置關(guān)系;
(3)當(dāng)m變化時(shí),試探究直線(xiàn)l上是否存在點(diǎn)M,使MA⊥MB?若存在,有幾個(gè)這樣的點(diǎn),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

第1卷

一、選擇題

1.D    2.B    3.B    4.C    5.A    6.C    7.B    8.A    9.D    10.C    11.A    12.A

第Ⅱ卷

二、填空題

13.

14.(理)(文)3x+3y-2=0

15.(-3,0)(3,+∞)

16.②④

三、解答題

17.(Ⅰ)這批食品不能出廠(chǎng)的概率是:

(Ⅱ)五項(xiàng)指標(biāo)全部檢驗(yàn)完畢,這批食品可以出廠(chǎng)的概率是:

五項(xiàng)指標(biāo)全部檢驗(yàn)完畢,這批食品不能出廠(chǎng)的概率是:

由互斥事件有一個(gè)發(fā)生的概率加法公式可知,五項(xiàng)指標(biāo)全部檢驗(yàn)完畢,

才能確定這批食品出廠(chǎng)與否的概率是:

18.(Ⅰ)設(shè)f(x)=ax+b(a≠0),則c的方程為:

      ①

由點(diǎn)(2,)在曲線(xiàn)c上,得1=(2一b).      ②

由①②解得a=b=1,∴曲線(xiàn)c的方程為y=x-1.

(Ⅱ)由,點(diǎn)(n+1,)底曲線(xiàn)c上,有=n

于是?…?,

注意到a1=1,所以an=(n-1)!

(Ⅲ)

19.(甲)(Ⅰ)選取DA1、DC、DD1,分別為Ox、Oy、Oy軸建立空間直角坐標(biāo),易知E(0,0,),F(xiàn)(,,0),B1(1,1,1),C(0,1,0),

=0,

(Ⅱ)G(0,,-1),Cl(0,1,1),

(Ⅲ),

(乙)

(Ⅰ)用反證法易證B1D1與A1D不垂直.

(Ⅱ)由余弦有cos∠AC1D1=

設(shè)AC1=x,則

單調(diào)遞增.

(Ⅲ)∵A1B1∥C1D1,∴∠AC1D1為異面直線(xiàn)AC1與A1B1所成角.

由余弦定理,有

設(shè)AC1=x,則

故AC1與A1B1所成角的取值范圍是

20.(理)解:

(Ⅰ)∵f(x)與g(x)的圖像關(guān)于直線(xiàn)x-1=0對(duì)稱(chēng),

∴f(x)=g(2-x).

f(x)=g(2一x)=-ax+2x3

又f(x)是偶函數(shù),∴

f(x)=f(-x)=ax一2x3

(Ⅱ)f(x)=a-6x2,∵f(x)為[0,1]上的增函數(shù).

∴f'(x)=a-6x2≥0,

∴a≥6x2上,恒成立.

∵x[0,1)時(shí),6x2≤6,∴a≥6.

即a的取值范圍是[6,+∞).

(Ⅲ)當(dāng)a在[0,1)上的情形.

由f'(x)=0,得得a=6.此時(shí)x=1

∴當(dāng)a(-6,6)時(shí),f(x)的最大值不可能是4.

(文)

(1)

(2)根據(jù)題意可得,

整理得(ax-a)(ax+a-1)<0.

由于a>1,所以x<1.

21.解:

(Ⅰ)∵|PF1|一|PF2|=2a,又|PF1|=3|PF2|.

∴|PF1|=3a,|PF2|=a.

設(shè)F1(-c,0),F(xiàn)2(c,0),P(x0,y0),由得3a=ex0+a,則x0=

∵P在雙曲線(xiàn)右支上,∴x1≥a,即≥a,解得

1<e≤2.

∴e的最大值為2,此時(shí)

∴漸近線(xiàn)方程為,

(Ⅱ)

∴b2=C2-a2=6.

∴雙曲線(xiàn)方程為

22.(理)解:

(1)可求得f(x)=

由f(x)<f(1)得

整理得(ax-a)(ax+a―1)<0.

由于a>l,所以x<1.

(Ⅱ)

,

,

,

即f(2)>2f(1).

即f(3)>3f(1).

(Ⅲ)更一般地,有:f(n)>nf(1)  (n *,n≥2).

用數(shù)學(xué)歸納法證明,

①由(Ⅱ)知n=2,3時(shí),不等式成立.

②假設(shè)n=k時(shí),不等式成立,即f(k)>kf(1).

這說(shuō)明n=k+1時(shí),不等式也成立.

由①②可知,對(duì)于一切,均有f(x)>nf(1).

(文)解:

(Ⅰ)∵f(x)與g(x)的圖像關(guān)于直線(xiàn)x-1=0對(duì)稱(chēng).

∴f(x)=g(2-x),當(dāng)x[-1,0]時(shí),2一x[2,3]

f(x)=g(2一x)=一ax+2x3

又∵f(x)是偶函數(shù),∴x[0,1]時(shí),一x[一1,0]

f(x)=f(一x)=ax一2x3

(Ⅱ)上的增函數(shù).

上恒成立

即a的取值范圍是[6,+∞].

(Ⅲ)只考慮在[0,1)上的情形.

∴當(dāng)的最大值不可能是4.


同步練習(xí)冊(cè)答案