即①當(dāng)?shù)缺葦?shù)列的公比時(shí).數(shù)列是等差數(shù)列.其通項(xiàng)公式是, 查看更多

 

題目列表(包括答案和解析)

已知公比為q(0<q<1)的無窮等比數(shù)列{an}各項(xiàng)的和為9,無窮等比數(shù)列{an2}各項(xiàng)的和為
(Ⅰ)求數(shù)列{an}的首項(xiàng)a1和公比q;
(Ⅱ)對給定的k(k=1,2,3,…,n),設(shè)T(k)是首項(xiàng)為ak,公差為2ak-1的等差數(shù)列。求數(shù)列T(2)的前10項(xiàng)之和;
(Ⅲ)設(shè)bi為數(shù)列T(i)的第i項(xiàng),Sn=b1+b2+…+bn,求Sn,并求正整數(shù)m(m>1),使得存在且不等于零。
(注:無窮等比數(shù)列各項(xiàng)的和即當(dāng)n→∞時(shí)該無窮數(shù)列前n項(xiàng)和的極限)

查看答案和解析>>

已知公比為q(0<q<1)的無窮等比數(shù)列{an}各項(xiàng)的和為9,無窮等比數(shù)列{a2n}各項(xiàng)的和為.

(1)求數(shù)列{an}的首項(xiàng)a1和公比q;

(2)對給定的k(k=1,2,…,n),設(shè)T(k)是首項(xiàng)為ak,公差為2ak-1的等差數(shù)列,求數(shù)列T(2)的前10項(xiàng)之和;

(3)設(shè)bi為數(shù)列T(i)的第i項(xiàng),Sn=b1+b2+…+bn,求Sn,并求正整數(shù)m(m>1),使得存在且不等于零.

(注:無窮等比數(shù)列各項(xiàng)的和即當(dāng)n→∞時(shí)該無窮等比數(shù)列前n項(xiàng)和的極限)

查看答案和解析>>

已知是等差數(shù)列,其前n項(xiàng)和為Sn是等比數(shù)列,且.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)記,證明).

【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

,得,,.

由條件,得方程組,解得

所以,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數(shù)學(xué)歸納法)

①  當(dāng)n=1時(shí),,故等式成立.

②  假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:

   

   

,因此n=k+1時(shí)等式也成立

由①和②,可知對任意,成立.

 

查看答案和解析>>

已知{an}是各項(xiàng)均為正數(shù)的等差數(shù)列,lga1、lga2、lga4成等差數(shù)列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數(shù)列;
(Ⅱ)如果無窮等比數(shù)列{bn}各項(xiàng)的和S=
1
3
,求數(shù)列{an}的首項(xiàng)a1和公差d.
(注:無窮數(shù)列各項(xiàng)的和即當(dāng)n→∞時(shí)數(shù)列前項(xiàng)和的極限)

查看答案和解析>>

已知{an}是各項(xiàng)均為正數(shù)的等差數(shù)列,lga1、lga2、lga4成等差數(shù)列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數(shù)列;
(Ⅱ)如果無窮等比數(shù)列{bn}各項(xiàng)的和S=
1
3
,求數(shù)列{an}的首項(xiàng)a1和公差d.
(注:無窮數(shù)列各項(xiàng)的和即當(dāng)n→∞時(shí)數(shù)列前項(xiàng)和的極限)

查看答案和解析>>


同步練習(xí)冊答案