若.求的值, 查看更多

 

題目列表(包括答案和解析)

已知圓C的方程為x2+y2=4,動點P滿足:過點P作直線與圓C相交所得的所有弦中,弦長最小的為2,記所有滿足條件的點P形成的幾何圖形為曲線M.
(1)寫出曲線M所對應(yīng)的方程;(不需要解答過程)
(2)過點S(0,2)的直線l與圓C交于A,B兩點,與曲線M交于E,F(xiàn)兩點,若AB=2EF,求直線l的方程;
(3)設(shè)點T(x0,y0).
①當y0=0時,若過點T存在一對互相垂直的直線同時與圓C有兩個公共點,求實數(shù)x0的取值范圍;
②若過點T存在一對互相垂直的直線同時與圓C有兩個公共點,試探求實數(shù)x0,y0應(yīng)滿足的條件.

查看答案和解析>>

已知圓C的方程為x2+y2=4,動點P滿足:過點P作直線與圓C相交所得的所有弦中,弦長最小的為2,記所有滿足條件的點P形成的幾何圖形為曲線M.
(1)寫出曲線M所對應(yīng)的方程;(不需要解答過程)
(2)過點S(0,2)的直線l與圓C交于A,B兩點,與曲線M交于E,F(xiàn)兩點,若AB=2EF,求直線l的方程;
(3)設(shè)點T(x,y).
①當y=0時,若過點T存在一對互相垂直的直線同時與圓C有兩個公共點,求實數(shù)x的取值范圍;
②若過點T存在一對互相垂直的直線同時與圓C有兩個公共點,試探求實數(shù)x,y應(yīng)滿足的條件.

查看答案和解析>>

已知橢圓┍的方程為
x2
a2
+
y2
b2
=1(a>b>0),點P的坐標為(-a,b).
(1)若直角坐標平面上的點M、A(0,-b),B(a,0)滿足
PM
=
1
2
PA
+
PB
),求點M的坐標;
(2)設(shè)直線l1:y=k1x+p交橢圓┍于C、D兩點,交直線l2:y=k2x于點E.若k1•k2=-
b2
a2
,證明:E為CD的中點;
(3)對于橢圓┍上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓┍上存在不同的兩個交點P1、P2滿足
PP1
+
PP2
=
PQ
,寫出求作點P1、P2的步驟,并求出使P1、P2存在的θ的取值范圍.

查看答案和解析>>

已知橢圓┍的方程為+=1(a>b>0),點P的坐標為(-a,b).
(1)若直角坐標平面上的點M、A(0,-b),B(a,0)滿足=+),求點M的坐標;
(2)設(shè)直線l1:y=k1x+p交橢圓┍于C、D兩點,交直線l2:y=k2x于點E.若k1•k2=-,證明:E為CD的中點;
(3)對于橢圓┍上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓┍上存在不同的兩個交點P1、P2滿足+=,寫出求作點P1、P2的步驟,并求出使P1、P2存在的θ的取值范圍.

查看答案和解析>>

已知橢圓┍的方程為+=1(a>b>0),點P的坐標為(-a,b).
(1)若直角坐標平面上的點M、A(0,-b),B(a,0)滿足=+),求點M的坐標;
(2)設(shè)直線l1:y=k1x+p交橢圓┍于C、D兩點,交直線l2:y=k2x于點E.若k1•k2=-,證明:E為CD的中點;
(3)對于橢圓┍上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓┍上存在不同的兩個交點P1、P2滿足+=,寫出求作點P1、P2的步驟,并求出使P1、P2存在的θ的取值范圍.

查看答案和解析>>


同步練習冊答案