5.函數的零點所在的區(qū)間為A. B.(0.1) C.(1.2) D.(1.e) 查看更多

 

題目列表(包括答案和解析)

函數的零點所在的區(qū)間為(      )

A.    B.     C.     D.

 

查看答案和解析>>

函數的零點所在的區(qū)間為(    )

A.          B.            C.            D.

 

查看答案和解析>>

函數的零點所在的區(qū)間為( )

A.           B.           C.           D.

 

查看答案和解析>>

函數的零點所在的區(qū)間為(    )

A.(-1,0)         B.(,1)   C.(1,2)    D.(1,

 

查看答案和解析>>

函數的零點所在的區(qū)間為(    )

A.          B.          C.         D.

 

查看答案和解析>>

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

A

D

A

B

D

B

C

B

C

D

B

1.提示:,故選C。

2.提示:“任意的”否定為“存在”;“>”的否定為“”,故選A

3.提示:,所以,故選D。

4.提示:在AB上取點D,使得,則點P只能在AD內運動,則,

5.提示:排除法選B。

6.提示:由圖(1)改為圖(2)后每次循環(huán)時的值都為1,因此運行過程出現無限循環(huán),故選D

7.提示:由莖葉圖的定義,甲得分為7,8,9,15,19,23,24,26,32,41。共11個數,19是中位數,乙得分為5,7,11,11,13,20,22,30,31,40。共11個數,13是中位數。

故選B。

8.提示:所以,故選C。

9.提示:由

如圖

過A作于M,則

 .

故選B.

10.提示:不妨設點(2,0)與曲線上不同的三的點距離為分別,它們組成的等比數列的公比為若令,顯然,又所以,不能取到。故選B。

11.提示:使用特值法:取集合可以排除A、B;

取集合,當可以排除C;故選D;

12.提示:n棱柱有個頂點,被平面截去一個三棱錐后,可以分以下6種情形(圖1~6)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2在圖4,圖6所示的情形,還剩個頂點;

在圖5的情形,還剩個頂點;

在圖2,圖3的情形,還剩個頂點;

在圖1的情形,還剩下個頂點.故選B.

二、填空題:

13.4   

提示:

      由(1),(2)得,所以。

14.   

提示:斜率 ,切點,所以切線方程為:

15.

提示:當時,不等式無解,當時,不等式變?yōu)?sub> ,

由題意得,所以,

16.

三、解答題:

17.解:① ∵的定義域為R;

② ∵

 ∴為偶函數;

③ ∵,  ∴是周期為的周期函數;

④ 當時,= ,

∴當單調遞減;當時,

=,

單調遞增;又∵是周期為的偶函數,∴上單調遞增,在上單調遞減();

⑤ ∵當;

.∴的值域為

 ⑥由以上性質可得:上的圖象如圖所示:

 

 

 

 

18.解:(Ⅰ)取PC的中點G,連結EG,GD,則

由(Ⅰ)知FD⊥平面PDC,面PDC,所以FD⊥DG。

所以四邊形FEGD為矩形,因為G為等腰Rt△RPD斜邊PC的中點,

所以DG⊥PC,

          所以DG⊥平面PBC.

          因為DG//EF,所以EF⊥平面PBC。

          (Ⅱ) 

           

           

           

          19.解:(1)當 時,,則函數上是增函數,故無極值;

          (2)。由及(1)只考慮的情況:

          x

          0

          +

          0

          -

          0

          +

          極大值

          極小值

          因此,函數在處取極小值,且

          ,所以;

          (3)由(2)可知,函數內都是增函數,又函數內是增函數,則,由(2)要使得不等式關于參數恒成立,必有,

          綜上:解得所以的取值范圍是

          20.解:

          分組

          頻數

          頻率

          50.5―60.5

          4

          0.08

          60.5―70.5

          8

          0.16

          70.5―80.5

          10

          0.20

          80.5―90.5

          16

          0.32

          90.5―100.5

          12

          0.24

          合計

          50

          1.00

          (1)

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          (3)成績在75.5-85.5分的的學生占70.5-80.5分的學生的,因為成績在70.5-80.5分的學生頻率為0.2,所以成績在75.5-80.5分的學生頻率為0.1,成績在80.5-85.5分的的學生占80.5-90.5分的學生的,因為成績在80.5-90.5分的學生頻率為0.32,所以成績在80.5-85.5分的學生頻率為0.16,所以成績在75.5-85.5分的學生頻率為0.26,由于有900名學生參加了這次競賽,所以該校獲二等獎的學生約為0.26900=234人

          21.解:(1)由已知,當時,

          時,,

          兩式相減得:

          時,適合上式,

          (2)由(1)知

          時,

          兩式相減得:

          ,則數列是等差數列,首項為1,公差為1。

          (3)

          要使得恒成立,

          恒成立,

          恒成立。

          為奇數時,即恒成立,又的最小值為1,

          為偶數時,即恒成立,又的最大值為,

          為整數,

          ,使得對任意,都有

          22.解:(1)由題意知

          解得,故,

          所以函數在區(qū)間 上單調遞增。

          (2)由

          所以點G的坐標為

          函數在區(qū)間 上單調遞增。

          所以當時,取得最小值,此時點F、G的坐標分別為

          由題意設橢圓方程為,由于點G在橢圓上,得

          解得

          所以得所求的橢圓方程為

          (3)設C,D的坐標分別為,則

          ,得,

          因為,點C、D在橢圓上,,,

          消去。又,解得

          所以實數的取值范圍是

           

           

           

           

           


          同步練習冊答案