,所以當時.不等式也成立. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)設,若對任意,,不等式 恒成立,求實數(shù)的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是

第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是     ........4分

(II)若對任意不等式恒成立,

問題等價于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,

故也是最小值點,所以;            ............6分

當b<1時,;

時,

當b>2時,;             ............8分

問題等價于 ........11分

解得b<1 或 或    即,所以實數(shù)b的取值范圍是 

 

查看答案和解析>>

 已知命題及其證明:

(1)當時,左邊=1,右邊=所以等式成立;

(2)假設時等式成立,即成立,

則當時,,所以時等式也成立。

由(1)(2)知,對任意的正整數(shù)n等式都成立。      

經(jīng)判斷以上評述

A.命題、推理都正確      B命題不正確、推理正確 

C.命題正確、推理不正確      D命題、推理都不正確

 

查看答案和解析>>

已知命題1+2+22+…+2n-1=2n-1及其證明:
(1)當n=1時,左邊=1,右邊=21-1=1,所以等式成立;
(2)假設n=k時等式成立,即1+2+22+…+2k-1=2k-1 成立,
則當n=k+1時,1+2+22+…+2k-1+2k==2k+1-1,所以n=k+1時等式也成立,
由(1)(2)知,對任意的正整數(shù)n等式都成立,
判斷以上評述

[     ]

A.命題、推理都正確
B.命題正確、推理不正確
C.命題不正確、推理正確
D.命題、推理都不正確

查看答案和解析>>

“城中觀!笔墙陙韲鴥群芏啻笾行统鞘袃葷乘碌默F(xiàn)象,究其原因,除天氣因素、城市規(guī)劃等原因外,城市垃圾雜物也是造成內澇的一個重要原因.暴雨會沖刷城市的垃圾雜物一起進入下水道,據(jù)統(tǒng)計,在不考慮其它因素的條件下,某段下水道的排水量V(單位:立方米/小時)是雜物垃圾密度x(單位:千克/立方米)的函數(shù).當下水道的垃圾雜物密度達到2千克/立方米時,會造成堵塞,此時排水量為0;當垃圾雜物密度不超過0.2千克/立方米時,排水量是90立方米/小時;研究表明,0.2≤x≤2時,排水量V是垃圾雜物密度x的一次函數(shù).
(1)當0≤x≤2時,求函數(shù)V(x)的表達式;
(2)當垃圾雜物密度x為多大時,垃圾雜物量(單位時間內通過某段下水道的垃圾雜物量,單位:千克/小時)f(x)=x•V(x)可以達到最大,求出這個最大值.

查看答案和解析>>

 “城中觀!笔墙陙韲鴥群芏啻笾行统鞘袃葷乘碌默F(xiàn)象,究其原因,除天氣因素、城市規(guī)劃等原因外,城市垃圾雜物也是造成內澇的一個重要原因。暴雨會沖刷城市的垃圾雜物一起進入下水道,據(jù)統(tǒng)計,在不考慮其它因素的條件下,某段下水道的排水量V(單位:立方米/小時)是雜物垃圾密度x(單位:千克/立方米)的函數(shù)。當下水道的垃圾雜物密度達到2千克/立方米時,會造成堵塞,此時排水量為0;當垃圾雜物密度不超過0.2千克/立方米時,排水量是90立方米/小時;研究表明,時,排水量V是垃圾雜物密度x的一次函數(shù)。

(Ⅰ)當時,求函數(shù)V(x)的表達式;

(Ⅱ)當垃圾雜物密度x為多大時,垃圾雜物量(單位時間內通過某段下水道的垃圾雜物量,單位:千克/小時)可以達到最大,求出這個最大值。

 

查看答案和解析>>


同步練習冊答案