8.方程=1表示焦點在y軸上的橢圓.則m的取值范圍是( ) 查看更多

 

題目列表(包括答案和解析)

方程=1表示焦點在y軸上的橢圓,則m的取值范圍是K#s5u

 

A.-16<m<25        B.-16<m<       C.<m<25       D.m>

 

查看答案和解析>>

方程=1表示焦點在y軸上的橢圓,則m的取值范圍是
A.-16<m<25B.-16<m<C.<m<25D.m>

查看答案和解析>>

方程=1表示焦點在y軸上的橢圓,則m的取值范圍是(   ).

A.-16<m<25        B.-16<m<       C.<m<25       D.m>

查看答案和解析>>

方程=1表示焦點在y軸上的橢圓,則m的取值范圍是K#s5u

A.-16<m<25B.-16<m<C.<m<25D.m>

查看答案和解析>>

若方程-=1表示焦點在y軸上的橢圓,那么實數(shù)a的取值范圍是…(    )

A.a<0            B.-1<a<0           C.a<1              D.以上都不對

查看答案和解析>>

第一部分

一.選擇題(每小題5分)

1.D  2.A  3.C  4.D  5.B  6.D  7.D  8.C  9.A

二.填空題(每小題5分)

10. 12  5.2  11.    12. 19,13  13. 85  14.①③⑷

三.解答題

15.(本題9分)

解:如圖建系………………………………………1分

,則………… 3分

設(shè)交點為P,P為AD中點,則

16. (本題9分)

解:(1)

分組

0~20

20~40

40~60

60~80

80~100

頻數(shù)

3

6

12

21

18

頻率

0.05

0.10

0.20

0.35

0.3

…………………………………………………………………………3分

(2) 略……………………………………………………………3分

(3)依次記小矩形面積為,則,………………3分

17. (本題12分)

解:(1)設(shè)事件為“方程有實根”.

,時,方程有實根的充要條件為………………2分.

基本事件共12個:

.其中第一個數(shù)表示的取值,第二個數(shù)表示的取值.……………………………………………… 3分

事件中包含9個基本事件,即

(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)……………

5分

所以事件發(fā)生的概率為

.…………………………………………… 6分

(Ⅱ)試驗的全部結(jié)果所構(gòu)成的區(qū)域為……………………8分.

構(gòu)成事件的區(qū)域為………………………………10分

所以所求的概率為.………………………………………………………12分

 

第二部分

18.(1),(2)

19.(本小題12分)

解:因為,所以當………………………………………………2分

因為當

所以,由題意得:當時,恒成立……………………4分

…………………………………………6分

②設(shè)方程的兩根為,則…………………7分

所以………………………………………………11分

所以,………………………………………………………………………………12分

 

20.(本小題12分)

解:(充分性)已知

假設(shè)方程都沒有實數(shù)根,則…………………………2分

所以,與已知矛盾,

所以,假設(shè)不成立,即方程至少存在一個有實數(shù)根………………………………………6分

所以,=2(+)是方程與方程中至少有一個有實根的充分條件

………………………………………………………………………………………………7分

(必要性)取,則方程都有實根,

,不滿足條件,所以,=2(+)是方程與方程中至少有一個有實根的不必要條件

=2(+)是方程與方程中至少有一個有實根的充分不必要條件

………………………………………………………………………………………………………………12分

 

21.(本小題14分)

解:(1)………………2分

,則,所以函數(shù)在區(qū)間上單調(diào)遞減,即

所以,當時,,因為函數(shù)為偶函數(shù),所以

時,………………………………………………4分

(2)若,即在區(qū)間上單調(diào)遞增,即,

所以,當時,…………………………………………7分

因為

,即,當時,,

所以………………………………………………………10分

若若,即,當時,,

所以………………………………………………………13分

綜上所述,因為函數(shù)為偶函數(shù),所以當時,

………………………………………………………………14分

 

 

 

 


同步練習冊答案
鍏� 闂�