(Ⅲ)若c=0, ,時.恒成立.求的取值范圍. 2009年馬鞍山市高中畢業(yè)班第三次教學(xué)質(zhì)量檢測 查看更多

 

題目列表(包括答案和解析)

(14分)設(shè)函數(shù)

(Ⅰ)若互不相等,且,求證成等差數(shù)列;

(Ⅱ)若,過兩點(diǎn)的中點(diǎn)作與x軸垂直的直線,此直線與的圖象交于點(diǎn)P,

求證:函數(shù)在點(diǎn)P處的切線過點(diǎn)(c,0);

(Ⅲ)若c=0, ,時,恒成立,求的取值范圍.

查看答案和解析>>

(本題滿分16分)

已知函數(shù),.(其中為自然對數(shù)的底數(shù)).

(1)設(shè)曲線處的切線與直線垂直,求的值;(2)若對于任意實數(shù)≥0,恒成立,試確定實數(shù)的取值范圍;(3)當(dāng)時,是否存在實數(shù),使曲線C:在點(diǎn)處的切線與軸垂直?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

已知A、B、C是直線上三點(diǎn),向量滿足:

 +

   (1)求函數(shù)的表達(dá)式;

   (2)若x>0,證明;

   (3)若不等式,及都恒成立,求實數(shù)m的取值范圍。

查看答案和解析>>

已知函數(shù)f(x)=x2+bx+c(b、c∈R)且當(dāng)x≤1時,f(x)≥0,當(dāng)1≤x≤3時,f(x)≤0恒成立.
(1)求b、c之間的關(guān)系式;
(2)當(dāng)c≥3時,是否存在實數(shù)m使得g(x)=f(x)-m2x在區(qū)間(0,+∞)上是單調(diào)函數(shù)?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=x2+bx+c(b、c∈R)且當(dāng)x≤1時,f(x)≥0,當(dāng)1≤x≤3時,f(x)≤0恒成立.
(1)求b、c之間的關(guān)系式;
(2)當(dāng)c≥3時,是否存在實數(shù)m使得g(x)=f(x)-m2x在區(qū)間(0,+∞)上是單調(diào)函數(shù)?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

一.選擇題

序號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

B

D

D

C

A

C

C

B

D

A

二填空題

13.;                14.-6 ;         15.;           16..

三.解答題

17.解:(Ⅰ)

………………………………………………………………4分

…………………………6分

(Ⅱ) …………………………………………………8分

…………………………………………………………………………10分

………………………………………………………………………………12分

 

18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.

在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4.

.……………………………………………………………… 2分

則V=.     ……………………………………………………………… 4分

 

(Ⅱ)∵PA=CA,F(xiàn)為PC的中點(diǎn),∴AF⊥PC.                …………………………5分

∵PA⊥平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.

∵E為PD中點(diǎn),F(xiàn)為PC中點(diǎn),∴EF∥CD.則EF⊥PC.     …………………………7分

∵AF∩EF=F,∴PC⊥平面AEF.…………………………………………………………8分

(Ⅲ)以A為坐標(biāo)原點(diǎn),AD,AP所在直線分別為y軸,z軸,建立空間直角坐標(biāo)系,

則平面PAD的法向量為:=(1,0,0)

由(Ⅱ)知AF⊥PC,AF⊥CD   ∴AF⊥平面PCD

為平面PCD的法向量.

∵P(0,0,2),C=

,即二面角C-PD-A的余弦值為…………12分

19.解:設(shè)第一個匣子里的三把鑰匙為A,B,C,第二個匣子里的三把鑰匙為a,b,c(設(shè)A,a能打開所有門,B只能打開第一道門,b只能打開第二道門,C,c不能打開任何一道門)

(Ⅰ)…………………………………………………………………………4分

(Ⅱ)(第一次只能拿B,第二次只能拿c) ……………………………6分

(第一次只能拿B,第二次只能拿b) ……………………………8分

(第一次拿A,第二次隨便拿,或第一次拿B,第二次拿a) …10分

                   …………………………12分

 

20.(Ⅰ)依題

 

…………………………………………………3分

為等差數(shù)列,a1=1,d=2

………………………………………………………………………………………………5分

(Ⅱ)設(shè)公比為q,則由b1b2b3=8,bn>0…………………………………………………6分

成等差數(shù)列

………………………………………………………………………………………8分

…………………………………………………………………………………10分

……………………………………………………………………12分

 

 

21解:(Ⅰ)依題PN為AM的中垂線

…………………………………………………………2分

又C(-1,0),A(1,0)

所以N的軌跡E為橢圓,C、A為其焦點(diǎn)…………………………………………………………4分

a=,c=1,所以為所求………………………………………………………5分

(Ⅱ)設(shè)直線的方程為:y=k(x-1)代入橢圓方程:x2+2y2=2得

(1+2k2)x2-4k2x+2k2-2=0………………(1)

設(shè)G(x1,y1)、H(x2,y2),則x1,x2是(1)的兩個根.

…………………………………………………………7分

依題

………………………………………………………9分

解得:………………………………………………………………………12分

 

22.解:(Ⅰ)

,則

   即成等差數(shù)列……………………3分

(Ⅱ)依題意

    

∴切線

,即

∴切線過點(diǎn).……………………………………………………………………………8分

(Ⅲ),則

   ∴

時:

時,,此時為增函數(shù);

時,,此時為減函數(shù);

時,,此時為增函數(shù).

    而,依題意有    ………………10分

時:時,

  即……(☆)

,則

為R上的增函數(shù),而,∴時,

恒成立,(☆)無解.

綜上,為所求.…………………………………………………………………………14分

 

 


同步練習(xí)冊答案